Publications by authors named "Priscila F S Rosa"

The thermal conductivity of heavy-fermion superconductor CeCoIn_{5} was measured with a magnetic field rotating in the tetragonal a-b plane, with the heat current in the antinodal direction, J|| [100]. We observe a sharp resonance in thermal conductivity for the magnetic field at an angle Θ≈12°, measured from the heat current direction [100]. This resonance corresponds to the reported resonance at an angle Θ^{'}≈33° from the direction of the heat current applied along the nodal direction, J||[110].

View Article and Find Full Text PDF

The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localized f-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency of f-electrons to polarize in a strong magnetic field, consequently weakening the interactions.

View Article and Find Full Text PDF

There has been a recent surge of interest in UTe due to its unconventional magnetic field ()-reinforced spin-triplet superconducting phases persisting at fields far above the simple Pauli limit for . Magnetic fields in excess of 35 T then induce a field-polarized magnetic state via a first-order-like phase transition. More controversially, for field orientations close to and above 40 T, electrical resistivity measurements suggest that a further superconducting state may exist.

View Article and Find Full Text PDF

Odd-parity superconductor UTe_{2} shows spontaneous time-reversal symmetry breaking and multiple superconducting phases, which imply chiral superconductivity, but only in a subset of samples. Here we microscopically observe a homogeneous superfluid density n_{s} on the surface of UTe_{2} and an enhanced superconducting transition temperature near the edges. We also detect vortex-antivortex pairs even at zero magnetic field, indicating the existence of a hidden internal field.

View Article and Find Full Text PDF

Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlated -electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperature , magnetic field to 60 T, and pressure to 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique.

View Article and Find Full Text PDF

The intermetallic compound Eu[Formula: see text]In[Formula: see text]Sb[Formula: see text], an antiferromagnetic material with nonsymmorphic crystalline structure, is investigated by magnetic, electronic transport and specific heat measurements. Being a Zintl phase, insulating behavior is expected. Our thermodynamic and magnetotransport measurements along different crystallographic directions strongly indicate polaron formation well above the magnetic ordering temperatures.

View Article and Find Full Text PDF

Kondo insulators are expected to transform into metals under a sufficiently strong magnetic field. The closure of the insulating gap stems from the coupling of a magnetic field to the electron spin, yet the required strength of the magnetic field-typically of order 100 T-means that very little is known about this insulator-metal transition. Here we show that Ce[Formula: see text]Bi[Formula: see text]Pd[Formula: see text], owing to its fortuitously small gap, provides an ideal Kondo insulator for this investigation.

View Article and Find Full Text PDF

We present a study of resonant inelastic x-ray scattering (RIXS) spectra collected at the rare-earth L edges of divalent hexaborides YbB and EuB. In both systems, RIXS-active features are observed at two distinct resonances separated by [Formula: see text] eV in incident energy, with angle-dependence suggestive of distinct photon scattering processes. RIXS spectra collected at the divalent absorption peak resemble the unoccupied 5d density of states calculated using density functional theory.

View Article and Find Full Text PDF

The inverted resistance method was used in this study to extend the bulk resistivity of [Formula: see text] to a regime where the surface conduction overwhelms the bulk. Remarkably, regardless of the large off-stoichiometric growth conditions (inducing disorder by samarium vacancies, boron interstitials, etc.), the bulk resistivity shows an intrinsic thermally activated behavior that changes ∼7-10 orders of magnitude, suggesting that [Formula: see text] is an ideal insulator that is immune to disorder.

View Article and Find Full Text PDF

The specific heat [Formula: see text] of metallic SrB single crystals shows an anomalous behavior for [Formula: see text] K which varies strongly with an applied magnetic field. This is consistent with a two-level Schottky system. We ascribe the excess of [Formula: see text] in this temperature range to localized magnetic moments.

View Article and Find Full Text PDF

The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB, a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent's magnetic properties.

View Article and Find Full Text PDF

SmB has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E and high temperature gap E) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.

View Article and Find Full Text PDF

In this work, we review single mode SiO₂ fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity () as low as a few parts in one hundred million (≈10).

View Article and Find Full Text PDF

We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅.

View Article and Find Full Text PDF