In this study, we investigated if the therapeutic potential of peripheral blood mononuclear cell (PBMC) therapy in a murine model of ischemic AKI is related with the survival pattern of monocyte/macrophages in tissue. CD-1 mice were subjected to bilateral renal ischemia followed by reperfusion to induce AKI. M2-polarized PBMCs isolated from CD-1 mice were administered intravenously at different time points post-injury.
View Article and Find Full Text PDFMacrophages must remove apoptotic cells to shield tissues from the deleterious components of dying cells. The development of chronic inflammation and autoimmune symptoms in systemic lupus is influenced by a deficiency in phagocytosis of apoptotic cells but the underlying mechanism is still unknown. Modifications in monocyte/macrophage phenotype brought on by an increase in their inflammatory phenotype would cause them to decrease the expression of CPT1a, which would reduce their ability to phagocytose, aggravating kidney damage in lupus nephritis.
View Article and Find Full Text PDFWe propose the use of a peripheral blood mononuclear cell therapy based on cell NGAL release to be used in the clinical setting for acute kidney injury (AKI) and the derived fibrosis. First, we designed a procedure whereby PBMC overexpress NGAL and anti-inflammatory agents when subjected to repetitive anoxia/reoxygenation (PBMC (A/R)). Using an in vivo AKI model, we observed that PBMC(A/R) reduces BUN and creatinine levels in blood and inflammation, enhances anti-inflammation, induces proliferation of tubular epithelial cells and reduces AKI-induced fibrosis.
View Article and Find Full Text PDFMacrophages have mechanisms for eliminating cholesterol from cells. If excess cholesterol is not eliminated from the macrophages, then transformation into a foam cell may occur. Foam cells are a hallmark of the atherosclerotic lesions that contribute to the development and rupture of atherosclerotic plaques.
View Article and Find Full Text PDFPhagocytosis is an inherent function of tissue macrophages for the removal of apoptotic cells and cellular debris during acute and chronic injury; however, the dynamics of this event during fibrosis development is unknown. We aim to prove that during the development of kidney fibrosis in the unilateral ureteral obstruction (UUO) model, there are some populations of macrophage with a reduced ability to phagocytose, and whether the infusion of a population of phagocytic macrophages could reduce fibrosis in the murine model UUO. For this purpose, we have identified the macrophage populations during the development of fibrosis and have characterized their phagocytic ability and their expression of CPT1a.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores.
View Article and Find Full Text PDFBackground: Macrophage are specialized cells that contributes to the removal of detrimental contents via phagocytosis. Lipid accumulation in macrophages, whether from phagocytosis of dying cells or from circulating oxidized low-density lipoproteins, alters macrophage biology and functionality. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content.
View Article and Find Full Text PDFBackground: Dyslipidemia causes renal damage; however, the detailed molecular mechanism has not been clarified. It is known that carnitine palmitoyl transferase 1-a (CPT1a) gene encodes an enzyme involved in fatty acid oxidation and, therefore, lipid content. In the present study, we investigated whether the accumulation of lipids induced by 7-ketocholesterol (7-KC) in tubular epithelial cells produce a fibrotic and inflammatory response through CPT1a.
View Article and Find Full Text PDFEpithelial to mesenchymal transition (EMT) has emerged as a key process in the development of renal fibrosis. In fact, EMT-derived fibroblasts contribute to the progression of chronic renal disease. In addition, anti-inflammatory M2 macrophages have exhibited a great influence on renal fibrosis.
View Article and Find Full Text PDFObjective: To evaluate the diagnostic utility of routine gastric biopsies taken at random versus targeted biopsies with methylene blue staining for the diagnosis of intestinal metaplasia.
Material And Methods: We performed a validation study in 376 patients. We performed 2 antral biopsies, 2 gastric body biopsies, 1 biopsy for urease test and additional biopsies if demanded.
Rev Gastroenterol Peru
July 2012
Background: The BISAP score is a simple system, which englobes clinical features (laboratory and imagenology tests) allowing to predict the mortality in acute pancreatitis within the first 24 hours of hospitalization.
Objective: To determine the validity of the BISAP score in the prediction of prognosis and severity of acute pancreatitis.
Method: In order to validate the BISAP score, a study was performed in 57 patients with a diagnosis of acute pancreatitis at the moment of admission.