Publications by authors named "Priodyuti Pradhan"

A Multilayer network is a potent platform that paves the way for the study of the interactions among entities in various networks with multiple types of relationships. This study explores the dynamics of discrete-time quantum walks on a multilayer network. We derive a recurrence formula for the coefficients of the wave function of a quantum walker on an undirected graph with a finite number of nodes.

View Article and Find Full Text PDF

We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process.

View Article and Find Full Text PDF

Network science is increasingly being developed to get new insights about behavior and properties of complex systems represented in terms of nodes and interactions. One useful approach is investigating the localization properties of eigenvectors having diverse applications including disease-spreading phenomena in underlying networks. In this work, we evolve an initial random network with an edge rewiring optimization technique considering the inverse participation ratio as a fitness function.

View Article and Find Full Text PDF

Cancer complexome comprises a heterogeneous and multifactorial milieu that varies in cytology, physiology, signaling mechanisms and response to therapy. The combined framework of network theory and spectral graph theory along with the multilayer analysis provides a comprehensive approach to analyze the proteomic data of seven different cancers, namely, breast, oral, ovarian, cervical, lung, colon and prostate. Our analysis demonstrates that the protein-protein interaction networks of the normal and the cancerous tissues associated with the seven cancers have overall similar structural and spectral properties.

View Article and Find Full Text PDF