This paper reviews the literature on assessing electrical dyssynchrony for patient selection in cardiac resynchronization therapy (CRT). The guideline-recommended electrocardiographic (ECG) criteria for CRT are QRS duration and morphology, established through inclusion criteria in large CRT trials. However, both QRS duration and LBBB morphology have their shortcomings.
View Article and Find Full Text PDFElectrical cardioversion presents one of the treatment options for atrial fibrillation (AF). However, the early recurrence rate is high, reaching ~40% three months after the procedure. Features based on vectorcardiographic signals were explored to find association with early recurrence of AF.
View Article and Find Full Text PDFBackground And Aims: Accelerated atrial pacing offers potential benefits for patients with heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF), compared with standard lower-rate pacing. The study investigates the relationship between atrial pacing rate and left-heart filling pressure.
Methods: Seventy-five consecutive patients undergoing catheter ablation for AF underwent assessment of mean left atrial pressure (mLAP) and atrioventricular (AV) conduction delay (PR interval) in sinus rhythm and accelerated atrial pacing with 10 bpm increments up to Wenckebach block.
Background: Both left ventricular (LV) mechanical dyssynchrony and filling pressure have been shown to be associated with outcome in heart failure patient treated with cardiac resynchronization therapy (CRT).
Objectives: To investigate the mechanistic link between mechanical dyssynchrony and filling pressure and to assess their combined prognostic value in CRT candidates.
Methods: Left atrial pressure (LAP) estimation and quantification of mechanical dyssynchrony were retrospectively performed in 219 CRT patients using echocardiography.
Introduction: Left bundle branch area pacing (LBBAP) comprises pacing at the left ventricular septum (LVSP) or left bundle branch (LBBP). The aim of the present study was to investigate the differences in ventricular electrical heterogeneity between LVSP, LBBP, right ventricular pacing (RVP) and intrinsic conduction with different dyssynchrony measures using the ECG, vectorcardiograpy, ECG belt, and Ultrahigh frequency (UHF-)ECG.
Methods: Thirty-seven patients with a pacemaker indication for bradycardia or cardiac resynchronization therapy underwent LBBAP implantation.
Ann Noninvasive Electrocardiol
September 2024
Background: Manually derived electrocardiographic (ECG) parameters were not associated with mortality in mechanically ventilated COVID-19 patients in earlier studies, while increased high-sensitivity cardiac troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were. To provide evidence for vectorcardiography (VCG) measures as potential cardiac monitoring tool, we investigated VCG trajectories during critical illness.
Methods: All mechanically ventilated COVID-19 patients were included in the Maastricht Intensive Care Covid Cohort between March 2020 and October 2021.
Ultrasound speckle tracking is frequently used to quantify myocardial strain, and magnetic resonance imaging (MRI) feature tracking is rapidly gaining interest. Our aim is to validate cardiac MRI feature tracking by comparing it with the gold standard method (i.e.
View Article and Find Full Text PDFIdentifying electrical dyssynchrony is crucial for cardiac pacing and cardiac resynchronization therapy (CRT). The ultra-high-frequency electrocardiography (UHF-ECG) technique allows instantaneous dyssynchrony analyses with real-time visualization. This review explores the physiological background of higher frequencies in ventricular conduction and the translational evolution of UHF-ECG in cardiac pacing and CRT.
View Article and Find Full Text PDFFrom precordial ECG leads, the conventional determination of the negative derivative of the QRS complex (ND-ECG) assesses epicardial activation. Recently we showed that ultra-high-frequency electrocardiography (UHF-ECG) determines the activation of a larger volume of the ventricular wall. We aimed to combine these two methods to investigate the potential of volumetric and epicardial ventricular activation assessment and thereby determine the transmural activation sequence.
View Article and Find Full Text PDFBackground: Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes.
View Article and Find Full Text PDFAims: Identifying heart failure (HF) patients who will benefit from cardiac resynchronization therapy (CRT) remains challenging. We evaluated whether virtual pacing in a digital twin (DT) of the patient's heart could be used to predict the degree of left ventricular (LV) reverse remodelling post-CRT.
Methods And Results: Forty-five HF patients with wide QRS complex (≥130 ms) and reduced LV ejection fraction (≤35%) receiving CRT were retrospectively enrolled.
Background: Invasive measurements of left ventricular (LV) hemodynamic performance can evaluate acute response to cardiac resynchronization therapy (CRT).
Objective: The study sought to determine which metric, maximum rate of LV pressure rise (LV dP/dt) or LV stroke work (LVSW), is more strongly associated with long-term prognosis.
Methods: CRT patients were prospectively included from 3 academic centers.
Aims: Data on repolarization parameters in cardiac resynchronization therapy (CRT) are scarce. We investigated the association of baseline T-wave area, with both clinical and echocardiographic outcomes of CRT in a large, multi-centre cohort of CRT recipients. Also, we evaluated the association between the baseline T-wave area and QRS area.
View Article and Find Full Text PDFThe present article reviews the literature on image-guided cardiac resynchronization therapy (CRT) studies. Improved outcome to CRT has been associated with the placement of a left ventricular (LV) lead in the latest activated segment free from scar. The majority of randomized controlled trials investigating guided LV lead implantation did not show superiority over conventional implantation approaches.
View Article and Find Full Text PDFCardiac resynchronization therapy (CRT) was proposed in the 1990s as a new therapy for patients with heart failure and wide QRS with depressed left ventricular ejection fraction despite optimal medical treatment. This review is aimed first to describe the rationale and the physiologic effects of CRT. The journey of the landmark randomized trials leading to the adoption of CRT in the guidelines since 2005 is also reported showing the high level of evidence for CRT.
View Article and Find Full Text PDFBackground: We investigated the impact of baseline left atrial (LA) strain data and estimated left atrial pressure (LAP) by applying the 2016 American Society of Echocardiography and the European Association of Cardiovascular Imaging (ASE/EACVI) guidelines on cardiac resynchronization therapy (CRT) outcomes.
Methods: Datasets of 219 CRT patients were retrospectively analysed. All patients had full echocardiographic diastolic function assessment before CRT and were classified based on the guideline algorithm into normal LAP (nLAP = 40%), elevated LAP (eLAP = 49%) and indeterminate LAP (iLAP = 11%).
Arrhythm Electrophysiol Rev
June 2023
[This corrects the article DOI: 10.15420/aer.2021.
View Article and Find Full Text PDFThe tight coupling between myocardial oxygen demand and supply has been recognized for decades, but it remains controversial whether this coupling persists under asynchronous activation, such as during left bundle branch block (LBBB). Furthermore, it is unclear whether the amount of local cardiac wall growth, following longer-lasting asynchronous activation, can explain differences in myocardial perfusion distribution between subjects. For a better understanding of these matters, we built upon our existing modeling framework for cardiac mechanics-to-perfusion coupling by incorporating coronary autoregulation.
View Article and Find Full Text PDFAims: Focus of pacemaker therapy is shifting from right ventricular (RV) apex pacing (RVAP) and biventricular pacing (BiVP) to conduction system pacing. Direct comparison between the different pacing modalities and their consequences to cardiac pump function is difficult, due to the practical implications and confounding variables. Computational modelling and simulation provide the opportunity to compare electrical, mechanical, and haemodynamic consequences in the same virtual heart.
View Article and Find Full Text PDFBackground: Continuous optimization of atrioventricular (AV) delay for cardiac resynchronization therapy (CRT) is mainly performed by electrical means.
Objective: The purpose of this study was to develop an estimation model of cardiac function that uses a piezoelectric microphone embedded in a pulse generator to guide CRT optimization.
Methods: Electrocardiogram, left ventricular pressure (LVP), and heart sounds were simultaneously collected during CRT device implantation procedures.
Background: Left bundle branch pacing (LBBP) produces delayed, unphysiological activation of the right ventricle. Using ultra-high-frequency electrocardiography (UHF-ECG), we explored how bipolar anodal septal pacing with direct LBB capture (aLBBP) affects the resultant ventricular depolarization pattern.
Methods: In patients with bradycardia, His bundle pacing (HBP), unipolar nonselective LBBP (nsLBBP), aLBBP, and right ventricular septal pacing (RVSP) were performed.
Introduction: We aimed to investigate the impact of the 2021 European Society of Cardiology (ESC) guideline changes in left bundle branch block (LBBB) definition on cardiac resynchronization therapy (CRT) patient selection and outcomes.
Methods: The MUG (Maastricht, Utrecht, Groningen) registry, consisting of consecutive patients implanted with a CRT device between 2001 and 2015 was studied. For this study, patients with baseline sinus rhythm and QRS duration ≥ 130ms were eligible.
Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood.
View Article and Find Full Text PDF