Publications by authors named "Prinjha R"

Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.

View Article and Find Full Text PDF

Initial clinical trials with drugs targeting epigenetic modulators - such as bromodomain and extraterminal protein (BET) inhibitors - demonstrate modest results in acute myeloid leukemia (AML). A major reason for this involves an increased transcriptional plasticity within AML, which allows cells to escape the therapeutic pressure. In this study, we investigated immediate epigenetic and transcriptional responses following BET inhibition and could demonstrate that BET inhibitor-mediated release of BRD4 from chromatin is accompanied by an acute compensatory feedback that attenuates down-regulation, or even increases expression, of specific transcriptional modules.

View Article and Find Full Text PDF

The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties.

View Article and Find Full Text PDF

Nutrient deficiency during pregnancy in numerous animal species can induce the state of embryonic diapause. Diapause is characterized by changes in protein and gene expression that minimize the organism's reliance on external energy sources and ensure survival. Remarkably, the systematic changes associated with diapause appear to spare the gene expression program that supports embryonic cells' maintenance in the pluripotent state.

View Article and Find Full Text PDF

Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation.

View Article and Find Full Text PDF

T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood.

View Article and Find Full Text PDF

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail -acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 () that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration.

View Article and Find Full Text PDF

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series.

View Article and Find Full Text PDF

The 1,3-dihydro-2-benzo[]azepin-2-ones are potent and ligand-efficient pan-BET bromodomain inhibitors. Here we describe the extension of this template to exploit a bivalent mode of action, binding simultaneously to both bromodomains. Initially the linker length and attachment vectors compatible with bivalent binding were explored, leading to the discovery of exceptionally potent bivalent BET inhibitors within druglike rule-of-5 space.

View Article and Find Full Text PDF

SP140 is an epigenetic reader protein expressed predominantly in immune cells. GWAS studies have shown an association between single nucleotide polymorphisms (SNPs) and diverse autoimmune and inflammatory diseases, suggesting a possible pathogenic role for SP140 in immune-mediated diseases. We previously demonstrated that treatment of human macrophages with the novel selective inhibitor of the SP140 protein (GSK761) reduced the expression of endotoxin-induced cytokines, implicating a role of SP140 in the function of inflammatory macrophages.

View Article and Find Full Text PDF

Background: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype.

View Article and Find Full Text PDF

Background: Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic imprinting is a mechanism that determines how genes are expressed based on which parent they come from, which is a key area for studying gene regulation and silencing.
  • Researchers used bioluminescent reporters in mouse embryonic stem cells to test various drugs that modify chromatin in an attempt to reverse silencing of the imprinted gene Cdkn1c inherited from the father.
  • While some treatments temporarily activated paternal Cdkn1c, most changes were not lasting, suggesting that the silencing "memory" is retained, although GSK-J4 did show some ability to maintain expression even after treatment stopped, possibly due to cellular stress.
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by loss of function mutations in the dystrophin gene (Dmd), resulting in progressive muscle weakening. Here we modelled the longitudinal expression of endogenous Dmd, and its paralogue Utrn, in mice and in myoblasts by generating bespoke bioluminescent gene reporters. As utrophin can partially compensate for Dmd-deficiency, these reporters were used as tools to ask whether chromatin-modifying drugs can enhance Utrn expression in developing muscle.

View Article and Find Full Text PDF

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization.

View Article and Find Full Text PDF

Chronic inflammation of pancreatic islets is a key driver of β-cell damage that can lead to autoreactivity and the eventual onset of autoimmune diabetes (T1D). In the islet, elevated levels of proinflammatory cytokines induce the transcription of the inducible nitric oxide synthase (iNOS) gene, , ultimately resulting in increased nitric oxide (NO). Excessive or prolonged exposure to NO causes β-cell dysfunction and failure associated with defects in mitochondrial respiration.

View Article and Find Full Text PDF

Background: Myeloid cells are critical determinants of the sustained inflammation in Crohn's Disease (CD). Targeting such cells may be an effective therapeutic approach for refractory CD patients. Bromodomain and extra-terminal domain protein inhibitors (iBET) are potent anti-inflammatory agents; however, they also possess wide-ranging toxicities.

View Article and Find Full Text PDF

Background: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation.

Results: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages.

View Article and Find Full Text PDF

Innate immune responses rely on inducible gene expression programmes which, in contrast to steady-state transcription, are highly dependent on cohesin. Here we address transcriptional parameters underlying this cohesin-dependence by single-molecule RNA-FISH and single-cell RNA-sequencing. We show that inducible innate immune genes are regulated predominantly by an increase in the probability of active transcription, and that probabilities of enhancer and promoter transcription are coordinated.

View Article and Find Full Text PDF

Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood.

View Article and Find Full Text PDF

Aims: To improve the tolerability and therapeutic application of histone deacetylase inhibitors (HDACi), by application of an esterase-sensitive motif (ESM), to target pharmacological activity directly to mononuclear myeloid cells expressing the processing enzyme carboxylesterase-1 (CES1).

Methods: This first-in-human study comprised single and multiple ascending dose cohorts to determine safety and tolerability. Pharmacodynamic parameters included acetylation, cytokine inhibition and intracellular concentrations of processed acid metabolite in isolated monocytes.

View Article and Find Full Text PDF

IgG antibodies form immune complexes (IC) that propagate inflammation and tissue damage in autoimmune diseases such as systemic lupus erythematosus. IgG IC engage Fcγ receptors (FcγR) on mononuclear phagocytes (MNP), leading to widespread changes in gene expression that mediate antibody effector function. Bromodomain and extra-terminal domain (BET) proteins are involved in governing gene transcription.

View Article and Find Full Text PDF

is a unicellular parasite that causes Chagas disease, which is endemic in the American continent but also worldwide, distributed by migratory movements. A striking feature of trypanosomatids is the polycistronic transcription associated with post-transcriptional mechanisms that regulate the levels of translatable mRNA. In this context, epigenetic regulatory mechanisms have been revealed to be of great importance, since they are the only ones that would control the access of RNA polymerases to chromatin.

View Article and Find Full Text PDF

Latency reversal strategies for HIV cure using inhibitor of apoptosis protein (IAP) antagonists (IAPi) induce unprecedented levels of latent reservoir expression without immunotoxicity during suppressive antiretroviral therapy (ART). However, full targeting of the reservoir may require combinatorial approaches. A Jurkat latency model screen for IAPi combination partners demonstrated synergistic latency reversal with bromodomain (BD) and extraterminal domain protein inhibitors (BETi).

View Article and Find Full Text PDF

Radiotherapy can induce various adverse effects including fibrosis in cancer patients. Radiation-induced aberrant expression of profibrotic genes has been associated with dysregulated epigenetic mechanisms. Pan-BET (bromodomain and extraterminal domain) inhibitors, such as JQ1 and I-BET151, have been reported to attenuate the profibrotic response after irradiation.

View Article and Find Full Text PDF