Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).
View Article and Find Full Text PDFLifestyle interventions remain the treatment of choice for patients with obesity and metabolic complications, yet are difficult to maintain and often lead to cycles of weight loss and regain (weight cycling). Literature on weight cycling remains controversial and we therefore investigated the association between weight cycling and metabolic complications using preexistent obese mice. Ldlr-/-.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are used in various household and industrial products. In humans, positive associations were reported between PFAS, including perfluorsulfonic acid and perfluorooctanoic acid, and cholesterol, a cardiometabolic risk factor. Animal studies show the opposite.
View Article and Find Full Text PDFPatients with metabolic syndrome are often prescribed statins to prevent the development of cardiovascular disease. Conversely, data on their effects on non-alcoholic steatohepatitis (NASH) are lacking. We evaluated these effects by feeding APOE*3-Leiden mice a Western-type diet (WTD) with or without atorvastatin to induce NASH and hepatic fibrosis.
View Article and Find Full Text PDFA gene-silencing platform (miQURE) has been developed and successfully used to deliver therapeutic microRNA (miRNA) to the brain, reducing levels of neurodegenerative disease-causing proteins/RNAs via RNA interference and improving the disease phenotype in animal models. This study evaluates the use of miQURE technology to deliver therapeutic miRNA for liver-specific indications. Angiopoietin-like 3 () was selected as the target mRNA because it is produced in the liver and because loss-of-function mutations and/or pharmacological inhibition of ANGPTL3 protein lowers lipid levels and reduces cardiovascular risk.
View Article and Find Full Text PDFIntroduction: The association between metabolic syndrome (MetS) and osteoarthritis (OA) development has become increasingly recognized. In this context, the exact role of cholesterol and cholesterol-lowering therapies in OA development has remained elusive. Recently, we did not observe beneficial effects of intensive cholesterol-lowering treatments on spontaneous OA development in E3L.
View Article and Find Full Text PDFIntroduction: Both systemic inflammation and dyslipidemia contribute to osteoarthritis (OA) development and have been suggested as a possible link between metabolic disease and OA development. Recently, the CANTOS trial showed a reduction in knee and hip replacements after inhibition of IL-1β in patients with a history of cardiovascular disease and high inflammatory risk. In this light, we investigated whether inhibition of IL-1β combined with cholesterol-lowering therapies can reduce OA development in dyslipidemic APOE∗3Leiden mice under pro-inflammatory dietary conditions.
View Article and Find Full Text PDFProprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic.
View Article and Find Full Text PDFBackground And Purpose: Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms.
Experimental Approach: Hyperlipidemic APOE*3Leiden.
We investigated the effects of chronic oral administration of mineral oil, versus corn oil as control, on intestinal permeability, inflammatory markers, and plasma lipids in APOE*3-Leiden.CETP mice. Mice received mineral oil or corn oil 15 or 30 μL/mouse/day for 16 weeks (15 mice/group).
View Article and Find Full Text PDFOncostatin M (OSM) signaling is implicated in atherosclerosis, however the mechanism remains unclear. We investigated the impact of common genetic variants in and its receptors, and , on overall plaque vulnerability, plaque phenotype, intraplaque and expression, coronary artery calcification burden and cardiovascular disease susceptibility. We queried Genotype-Tissue Expression data and found that rs13168867 (C allele) was associated with decreased expression and that rs10491509 (A allele) was associated with increased expression in arterial tissues.
View Article and Find Full Text PDFAssociations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e.
View Article and Find Full Text PDFObjective: High systemic cholesterol levels have been associated with osteoarthritis (OA) development. Therefore, cholesterol lowering by statins has been suggested as a potential treatment for OA. We investigated whether therapeutic high-intensive cholesterol-lowering attenuated OA development in dyslipidemic APOE∗3Leiden.
View Article and Find Full Text PDFWe investigated the effects of mineral oil on statin pharmacokinetics and inflammatory markers in animal models. A new synthesis strategy produced regioisomers that facilitated the characterization of the main metabolite (M1) of atorvastatin, a lipophilic statin, in C57BL/6NCrl mice. The chemical structure of M1 in mice was confirmed as ortho-hydroxy β-oxidized atorvastatin.
View Article and Find Full Text PDFStatins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques.
View Article and Find Full Text PDFBackground Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to mice or to mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA.
View Article and Find Full Text PDFMonoclonal anti-proprotein convertase subtilisin/kexin type 9 (PSCK9) neutralizing antibodies effectively lower plasma cholesterol levels and decrease cardiovascular events but also raised some concern that cognitive function could worsen as a side effect. Here, we performed experiments in mice to characterize the effect of anti-PCSK9 antibodies on behavior and cognitive function in detail. APOE*3Leiden.
View Article and Find Full Text PDFBackground & Aims: While fibrosis stage predicts liver-associated mortality, cardiovascular disease (CVD) is still the major overall cause of mortality in patients with NASH. Novel NASH drugs should thus ideally reduce both liver fibrosis and CVD. Icosabutate is a semi-synthetic, liver-targeted eicosapentaenoic acid (EPA) derivative in clinical development for NASH.
View Article and Find Full Text PDFIcosabutate is a structurally engineered eicosapentaenoic acid derivative under development for nonalcoholic steatohepatitis (NASH). In this study, we investigated the absorption and distribution properties of icosabutate in relation to liver targeting and used rodents to evaluate the effects of icosabutate on glucose metabolism, insulin resistance, as well as hepatic steatosis, inflammation, lipotoxicity, and fibrosis. The absorption, tissue distribution, and excretion of icosabutate was investigated in rats along with its effects in mouse models of insulin resistance () and metabolic inflammation/NASH (high-fat/cholesterol-fed APOE*3Leiden.
View Article and Find Full Text PDFAtherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit.
View Article and Find Full Text PDFObjective: Previous studies indicate a role for Oncostatin M (OSM) in atherosclerosis and other chronic inflammatory diseases for which inhibitory antibodies are in development. However, to date no intervention studies with OSM have been performed, and its relation to coronary heart disease (CHD) has not been studied.
Approach And Results: Gene expression analysis on human normal arteries (n = 10) and late stage/advanced carotid atherosclerotic arteries (n = 127) and in situ hybridization on early human plaques (n = 9) showed that OSM, and its receptors, OSM receptor (OSMR) and Leukemia Inhibitory Factor Receptor (LIFR) are expressed in normal arteries and atherosclerotic plaques.
LDL-cholesterol (LDL-C) is a causal pathogenic factor in atherosclerosis. Monoclonal anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralizing antibodies are novel potent LDL-lowering drugs which reduce cardiovascular events. To characterize their effect on atherogenesis, APOE*3Leiden.
View Article and Find Full Text PDF