Publications by authors named "Prince Saurabh Bassi"

Hematite (FeO) nanorods on FTO substrates have been proven to be promising photoanodes for solar fuel production but only with high temperature thermal activation which allows diffusion of tin (Sn) ions from FTO, eventually enhancing their conductivity. Hence, there is a trade-off between the conductivity of FeO, and the degradation of FTO occurring at high annealing temperatures (>750 °C). Here, we present a comprehensive study on undoped FeO nanorods under front and back illumination to find the optimum annealing temperature.

View Article and Find Full Text PDF

Porous tungsten oxide/copper tungstate (WO₃/CuWO₄) composite thin films were fabricated via a facile conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO₃)₂) solution with the copolymer surfactant PluronicF-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407) was loaded onto WO₃ substrates by programmed dip coating, followed by heat treatment in air at 550 °C.

View Article and Find Full Text PDF

Ultrathin TiO2 is deposited on conventional hydrothermal grown hematite nanorod arrays by atomic layer deposition (ALD). Significant photoelectrochemical water oxidation performance improvement is observed when the ALD TiO2-treated samples are annealed at 650 °C or higher temperatures. The electrochemical impedance spectroscopy (EIS) study shows a surface trap-mediated charge transfer process exists at the hematite-electrolyte interface.

View Article and Find Full Text PDF

We report the synthesis of iron based titanate (Fe2TiO5) thin films using a simple low cost hydrothermal technique. We show that this Fe2TiO5 works well as a photoanode for the photoelectrochemical splitting of water due to favorable band energetic. Further characterization of thin films including band positions with respect to water redox levels has been investigated.

View Article and Find Full Text PDF

Here, we report a significant improvement of the photoelectrochemical (PEC) properties of hematite (α-Fe2O3) to oxidize water by doping with manganese. Hematite nanorods were grown on a fluorine-treated tin oxide (FTO) substrate by a hydrothermal method in the presence on Mn. Systematic physical analyses were performed to investigate the presence of Mn in the samples.

View Article and Find Full Text PDF

In natural photosynthesis, the water splitting reaction of photosystem II is the source of the electrons/reducing equivalents for the reduction of carbon dioxide to carbohydrate while oxygen is formed as the by-product. Similarly, for artificial photosynthesis where the end product is a solar fuel such as hydrogen, a water splitting-oxygen evolving system is required to supply high energy electrons to drive the reductive reactions. Very attractive candidates for this purpose are iron based semiconductors which have band gaps corresponding to visible light and valence band energies sufficient to oxidise water.

View Article and Find Full Text PDF

A simple and inexpensive method to form a hematite photoanode for efficient water oxidation is reported. A very thin ZnO overlayer was deposited on top of a thin film of hematite and found, compared with non-treated hematite, to increase the photocurrent and reduce the onset potential for generating oxygen from water. After 3 cycles of ZnAc treatment, the photocurrent increased more than 40% to 1.

View Article and Find Full Text PDF