Dendritic cells (DCs) have been intensively studied in correlation to tumor immunology and for the development DC-based cancer vaccines. Here, we present the significance of the temporal aspect of DC maturation for the most essential subsequent timepoint, namely at interaction with responding T cells or after CD40-Ligand restimulation. Mostly, DC maturation is still being achieved by activation processes which lasts 24 h to 48 h.
View Article and Find Full Text PDFMesenchymal stem cell (MSCs) therapy has already been studied in kidney transplant recipients (KTRs), and the available data showed that it is safe and well tolerated. The aim of this study was to evaluate the safety and efficacy of autologous MSCs in combination with standard therapy in KTRs with biopsy-proven chronic active antibody-mediated rejection (AMR). Patients with biopsy-proven chronic active AMR received treatment with autologous bone marrow-derived MSCs (3 × 10 cells/kg iv) after completion of standard therapy and were followed for up to 12 months.
View Article and Find Full Text PDFDuring the ex vivo generation of anti-cancer dendritic cell (DC)-based vaccines, their maturation still represents one of the most crucial steps of the manufacturing process. A superior DC vaccine should: possess extensive expression of co-stimulatory molecules, have an exceptional type-1 polarization capacity characterized by their ability to produce IL-12p70 upon contact with responding T cells, migrate efficiently toward chemokine receptor 7 (CCR7) ligands, and have a superior capacity to activate cytotoxic T cell responses. A major advance has been achieved with the discovery of the next generation maturation protocol involving TLR-3 agonist (poly I:C), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IFN-α, and has since been known as α-type-1 maturation cocktail.
View Article and Find Full Text PDFOver the years, transfusion medicine has developed into a broad, multidisciplinary field that covers different clinical patient services such as apheresis technology and the development of stem cell transplantation. Recently, the discipline has found a niche in development and production of advanced therapy medicinal products (ATMPs) for immunotherapy and regenerative medicine purposes. In clinical trials, cell-based immunotherapies have shown encouraging results in the treatment of multiple cancers and autoimmune diseases.
View Article and Find Full Text PDFBackground And Objective: The European consortium project TRANSPOSE (TRANSfusion and transplantation: PrOtection and SElection of donors) aimed to assess and evaluate the risks to donors of Substances of Human Origin (SoHO), and to identify gaps between current donor vigilance systems and perceived risks.
Materials And Methods: National and local data from participating organizations on serious and non-serious adverse reactions in donors were collected from 2014 to 2017. Following this, a survey was performed among participants to identify risks not included in the data sets.