The Šoštanj exercise of the Modelling and Data for Radiological Impact Assessments I Urban Environments Working Group took advantage of a set of measurement data from a 1991 tracer experiment to test atmospheric dispersion models for emissions from point sources over complex terrain. The data set included emissions of SOfrom the stacks of the Šoštanj Thermal Power Plant in Slovenia, measurements of the SOat a number of locations in the surrounding area up to 7 km from the plant, and meteorological data from several monitoring stations, all as measured half-hour average values. Two sets of meteorological conditions were modelled: (a) a simple situation with a strong wind blowing from a point source directly towards a monitoring station; and (b) a complex situation involving a temperature inversion and convective mixing.
View Article and Find Full Text PDFThe IAEA's model testing programmes have included a series of Working Groups concerned with modelling radioactive contamination in urban environments. These have included the Urban Working Group of Validation of Environmental Model Predictions (1988-1994), the Urban Remediation Working Group of Environmental Modelling for Radiation Safety (EMRAS) (2003-2007), the Urban Areas Working Group of EMRAS II (2009-2011), the Urban Environments Working Group of (Modelling and Data for Radiological Impact Assessments) MODARIA I (2013-2015), and most recently, the Urban Exposures Working Group of MODARIA II (2016-2019). The overarching objective of these Working Groups has been to test and improve the capabilities of computer models used to assess radioactive contamination in urban environments, including dispersion and deposition processes, short-term and long-term redistribution of contaminants following deposition events, and the effectiveness of various countermeasures and other protective actions, including remedial actions, in reducing contamination levels, human exposures, and doses to humans.
View Article and Find Full Text PDFThe accidents in Chernobyl and Fukushima remind us that nuclear power plants should continuously invest resources in improving safety and in risk management. This paper presents the methodology for developing a measuring and modelling system with a high degree of automation, which enables predicting the effects of the spreading of radionuclides from the nuclear power plant to the atmosphere. The end result is the calculated population doses in the event of an accidental release, which is an essential piece of information needed by first responders to take proper action.
View Article and Find Full Text PDFRadiological atmospheric releases require population dose calculation for proper determination of preventive measures. The old concept of relative concentrations requires long lasting constant emission which is not realistic. The proposed concept of the "relative doses" is the generalization and expansion of the known concept of relative concentrations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2017
We present a new method of data assimilation with the aim of correcting the forecast of the maximum values of ozone in regional photo-chemical models for areas over complex terrain using multilayer perceptron artificial neural networks. Up until now, these types of models have been used as a single model for one location when forecasting concentrations of air pollutants. We propose a method for constructing a more ambitious model: a single model, which can be used at several locations because the model is spatially transferable and is valid for the whole 2D domain.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2016
This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution.
View Article and Find Full Text PDFThe study of atmospheric air pollution research in complex terrains is challenged by the lack of appropriate methodology supporting the analysis of the spatial relationship between phenomena affected by a multitude of factors. The key is optimal design of a meaningful approach based on small spatial units of observation. The Zasavje region, Slovenia, was chosen as study area with the main objective to investigate in practice the role of such units in a test environment.
View Article and Find Full Text PDF