The aim of this study was to review the current literature regarding the effects of intra-articularly applied, fat-derived orthobiologics (FDO) in the treatment of primary knee osteoarthritis over a mid-term follow-up period. A systematic literature search was conducted on the online databases of Scopus, PubMed, Ovid MEDLINE, and Cochrane Library. Studies investigating intra-articularly applied FDO with a minimum number of 10 knee osteoarthritis patients, a follow-up period of at least 2 years, and at least 1 reported functional parameter (pain level or Patient-Reported Outcome Measures) were included.
View Article and Find Full Text PDFBovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs).
View Article and Find Full Text PDFA biotechnological platform consisting of two-color 3D super-resolution readout and a microfluidic system was developed to investigate platelet interaction with a layer of perfused endothelial cells under flow conditions. Platelet activation has been confirmed via CD62P clustering on the membrane and mitochondrial morphology of ECs at the single cell level were examined using 3D two-color single-molecule localization microscopy and classified applying machine learning. To compare binding of activated platelets to intact or stressed ECs, a femtosecond laser was used to induced damage to single ECs within the perfused endothelial layer.
View Article and Find Full Text PDFActing as the largest energy reservoir in the body, adipose tissue is involved in longevity and progression of age-related metabolic dysfunction. Here, cellular senescence plays a central role in the generation of a pro-inflammatory environment and in the evolution of chronic diseases. Within the complexity of a tissue, identification and targeting of senescent cells is hampered by their heterogeneity.
View Article and Find Full Text PDFPeripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage.
View Article and Find Full Text PDFLipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro.
View Article and Find Full Text PDFJ Extracell Vesicles
October 2021
Interest in mesenchymal stem cell derived extracellular vesicles (MSC-EVs) as therapeutic agents has dramatically increased over the last decade. Current approaches to the characterization and quality control of EV-based therapeutics include particle tracking techniques, Western blotting, and advanced cytometry, but standardized methods are lacking. In this study, we established and verified quartz crystal microbalance (QCM) as highly sensitive label-free immunosensing technique for characterizing clinically approved umbilical cord MSC-EVs enriched by tangential flow filtration and ultracentrifugation.
View Article and Find Full Text PDFLoss of neuronal tissue is a hallmark of age-related neurodegenerative diseases. Since adult neurogenesis has been confirmed in the human brain, great interest has arisen in substances stimulating the endogenous neuronal regeneration mechanism based on adult neural stem cells. Medicinal plants are a valuable source of neuroactive small molecules.
View Article and Find Full Text PDFJ Photochem Photobiol B
August 2021
Due to their capacity to differentiate into the chondrogenic lineage, adipose-derived stromal/stem cells (ASC) are a promising source of therapeutically relevant cells for cartilage tissue regeneration. Their differentiation potential, however, varies between patients. In our study, we aim to stimulate ASC towards a more reliable chondrogenic phenotype using photobiomodulation (PBM).
View Article and Find Full Text PDFCoculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells.
View Article and Find Full Text PDFHigh-resolution imaging is essential for analysis of the steps and way stations of cargo transport in models of the endothelium. In this study, we demonstrate a microfluidic system consisting of two channels horizontally separated by a cell-growth-promoting membrane. Its design allows for high-resolution (down to single-molecule level) imaging using a high numerical aperture objective with a short working distance.
View Article and Find Full Text PDFLipedema is a chronic, progressive disease of adipose tissue with lack of consistent diagnostic criteria. The aim of this study was a thorough comparative characterization of extracellular microRNAs (miRNAs) from the stromal vascular fraction (SVF) of healthy and lipedema adipose tissue. For this, we analyzed 187 extracellular miRNAs in concentrated conditioned medium (cCM) and specifically in small extracellular vesicles (sEVs) enriched thereof by size exclusion chromatography.
View Article and Find Full Text PDFBackground: The interest in non-manipulated cells originating from adipose tissue has raised tremendously in the field of tissue engineering and regenerative medicine. The resulting stromal vascular fraction (SVF) cells have been successfully used in numerous clinical applications. The aim of this experimental work is, first to combine a macroporous synthetic mesh with SVF isolated using a mechanical disruption process, and to assess the effect of those cells on the early healing phase of hernia.
View Article and Find Full Text PDFPurinergic P2 receptors are critical regulators of several functions within the vascular system, including platelet aggregation, vascular inflammation, and vascular tone. However, a role for ATP release and P2Y receptor signalling in angiogenesis remains poorly defined. Here, we demonstrate that blood vessel growth is controlled by P2Y receptors.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age.
View Article and Find Full Text PDFThe prerequisite for a successful clinical use of autologous adipose-tissue-derived cells is the highest possible regenerative potential of the applied cell population, the stromal vascular fraction (SVF). Current isolation methods depend on high enzyme concentration, lysis buffer, long incubation steps and mechanical stress, resulting in single cell dissociation. The aim of the study was to limit cell manipulation and obtain a derivative comprising therapeutic cells (microtissue-SVF) without dissociation from their natural extracellular matrix, by employing a gentle good manufacturing practice (GMP)-grade isolation.
View Article and Find Full Text PDFA promising approach to overcome hypoxic conditions in tissue engineered constructs is to use the potential of endothelial cells (EC) to form networks when co-cultured with a supporting cell type in a 3D environment. Adipose tissue-derived stromal cells (ASC) as well as bone marrow-derived stromal cells (BMSC) have been shown to support vessel formation of EC , but only very few studies compared the angiogenic potential of both cell types using the same model. Here, we aimed at investigating the ability of ASC and BMSC to induce network formation of EC in a co-culture model in fibrin.
View Article and Find Full Text PDFThe original article [1] contains numerous value errors in the graphs in Fig. 2b regarding the markers describing the values for total tubule length and mean tubule length without aprotinin at 2.5 mg/ml concentration of fibrinogen.
View Article and Find Full Text PDFKnowledge on the availability of dissolved oxygen inside microfluidic cell culture systems is vital for recreating physiological-relevant microenvironments and for providing reliable and reproducible measurement conditions. It is important to highlight that cells experience a diverse range of oxygen tensions depending on the resident tissue type, which can also be recreated using specialized cell culture instruments that regulate external oxygen concentrations. While cell-culture conditions can be readily adjusted using state-of-the-art incubators, the control of physiological-relevant microenvironments within the microfluidic chip, however, requires the integration of oxygen sensors.
View Article and Find Full Text PDFReengineering functional vascular networks remains an integral part in tissue engineering, since the incorporation of non-perfused tissues results in restricted nutrient supply and limited waste removal. Microfluidic devices are routinely used to mimic both physiological and pathological vascular microenvironments. Current procedures either involve the investigation of growth factor gradients and interstitial flow on endothelial cell sprouting alone or on the heterotypic cell-cell interactions between endothelial and mural cells.
View Article and Find Full Text PDFA highly interesting source for adult stem cells is adipose tissue, from which the stromal vascular fraction (SVF)-a heterogeneous cell population including the adipose-derived stromal/stem cells-can be obtained. To enhance the regenerative potential of freshly isolated SVF cells, low-level light therapy (LLLT) was used. The effects of pulsed blue (475 nm), green (516 nm), and red (635 nm) light from light-emitting diodes applied on freshly isolated SVF were analysed regarding cell phenotype, cell number, viability, adenosine triphosphate content, cytotoxicity, and proliferation but also osteogenic, adipogenic, and proangiogenic differentiation potential.
View Article and Find Full Text PDFBackground: Co-cultures of endothelial cells with mesenchymal stem cells currently represent one of the most promising approaches in providing oxygen and nutrient supply for microvascular tissue engineering. Still, to translate this model into clinics several in vitro parameters including growth medium and scaffold degradation need to be fine-tuned.
Methods: We recently described the co-culture of adipose-derived stem cells with endothelial cells in fibrin, resulting in capillary formation in vitro as well as their perfusion in vivo.
Low level light therapy receives increasing interest in the fields of tissue regeneration and wound healing. Several in vivo studies demonstrated the positive effects of LLLT on angiogenesis. This study aimed to investigate the underlying properties in vitro by comparing the effects of light therapy by light emitting diodes of different wavelengths on endothelial cells in vitro.
View Article and Find Full Text PDFBackground: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
February 2018
One of the mainstays of facial rejuvenation strategies is volume restoration, which can be achieved by autologous fat grafting. In our novel approach, we treated the adipose tissue harvest site with extracorporeal shock wave therapy (ESWT) in order to improve the quality of the regenerative cells in situ. The latter was demonstrated by characterizing the cells of the stromal vascular fraction (SVF) in the harvested liposuction material regarding cell yield, adenosine triphosphate (ATP) content, proliferative capacity, surface marker profile, differentiation potential and secretory protein profile.
View Article and Find Full Text PDF