Publications by authors named "Priester C"

Bone tissue engineering is an emerging field of regenerative medicine, with a wide array of biomaterial technologies and therapeutics employed. However, it is difficult to objectively compare these various treatments during various stages of tissue response. Metabolomics is rapidly emerging as a powerful analytical tool to establish broad-spectrum metabolic signatures for a target biological system.

View Article and Find Full Text PDF

The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue.

View Article and Find Full Text PDF

Objective: This study aims to describe the subsequent reproductive outcomes in women who either correctly or incorrectly were diagnosed with amniotic fluid embolism (AFE).

Study Design: Medical records were obtained, abstracted and reviewed by authors with extensive experience in critical care obstetrics. Telephone interviews of all survivors were conducted to determine obstetrical and contraceptive history.

View Article and Find Full Text PDF

Background: Microglia can acquire various phenotypes of activation that mediate their inflammatory and neuroprotective effects. Aging causes microglia to become partially activated towards an inflammatory phenotype. As a result, aged animals display a prolonged neuroinflammatory response following an immune challenge.

View Article and Find Full Text PDF

We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean degree and number of blocks.

View Article and Find Full Text PDF

Skeletal muscle cells (fibers) contract by shortening their parallel subunits, the myofibrils. Here we show a novel pattern of myofibril orientation in white muscle fibers of large black sea bass, Centropristis striata. Up to 48% of the white fibers in fish >1168 g had peripheral myofibrils undergoing an ∼90(o) shift in orientation.

View Article and Find Full Text PDF

Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O(2) concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle.

View Article and Find Full Text PDF

This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 μm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers.

View Article and Find Full Text PDF

5-Bromo-2'-deoxyuridine (BrdU) is frequently used as a mitotic marker in studies of cell proliferation. Recent studies have reported cytotoxic effects of BrdU on neural progenitor cells in embryonic and neonatal brains in vivo and in adult tissue studied in vitro. The present study was conducted to assess whether BrdU interferes with cell proliferation and neuronal maturation in the rat adult hippocampus in vivo.

View Article and Find Full Text PDF

In addition to its role in neuronal migration during embryonic development, doublecortin (DCX) plays a role in hippocampal neurogenesis across the lifespan. Hippocampal neurons exhibit a high degree of synaptic plasticity while they are in the DCX phase. While previous studies have reported that behavioral training on hippocampus-dependent tasks can enhance neuron survival, little was known about the stage of development of those neurons and, particularly, whether a large pool of the surviving new neurons remains in the DCX phase for a prolonged period after training.

View Article and Find Full Text PDF

The ecdysial suture is the region of the arthropod exoskeleton that splits to allow the animal to emerge during ecdysis. We examined the morphology and composition of the intermolt and premolt suture of the blue crab using light microscopy and scanning electron microscopy. The suture could not be identified by routine histological techniques; however 3 of 22 fluorescein isothiocyanate-labeled lectins tested (Lens culinaris agglutinin, Vicia faba agglutinin, and Pisum sativum agglutinin) differentiated the suture, binding more intensely to the suture exocuticle and less intensely to the suture endocuticle.

View Article and Find Full Text PDF

We have used x-ray anomalous diffraction to recover the model-independent Fourier transform (x-ray structure factor) of InAs quantum sticklike islands embedded in InP. The average height of the quantum sticks, as deduced from the width of the structure factor profile, is 2.54 nm.

View Article and Find Full Text PDF

We have investigated the electronic structure of the conduction band states in InAs quantum boxes embedded in GaAs. Using cross-sectional scanning tunneling microscopy and spectroscopy, we report the direct observation of standing wave patterns in the boxes at room temperature. Electronic structure calculation of similar cleaved boxes allows the identification of the standing waves pattern as the probability density of the ground and first excited states.

View Article and Find Full Text PDF