Publications by authors named "Prieels D"

Trends toward the use of irradiator parameter release (also called machine-based release) put pressure on equipment manufacturers to guarantee accuracy and reliability of monitored process parameters. In the specific case of X-ray processing, relevance of these monitored parameters is questionable due to the additional difficulty coming from the fact that the X-ray converter does not have associated parameters or a monitored feedback mechanism. To bridge this gap, this article presents a novel method to verify in real-time consistency of certain X-ray field properties.

View Article and Find Full Text PDF

Objectives: Prompt gamma (PG) imaging has previously been demonstrated for use in proton range verification of a brain treatment with a homogeneous target region. In this study, the feasibility of PG imaging to detect anatomic change within a heterogeneous region is presented.

Methods: A prompt gamma camera recorded several fractions of a patient treatment to the base of skull.

View Article and Find Full Text PDF

Purpose: To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode.

Methods And Materials: A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan.

View Article and Find Full Text PDF

Prompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments.

View Article and Find Full Text PDF

More and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context.

View Article and Find Full Text PDF

Background And Purpose: To improve precision of particle therapy, in vivo range verification is highly desirable. Methods based on prompt gamma rays emitted during treatment seem promising but have not yet been applied clinically. Here we report on the worldwide first clinical application of prompt gamma imaging (PGI) based range verification.

View Article and Find Full Text PDF

Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron.

Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone.

View Article and Find Full Text PDF

Background And Purpose: To investigate the use of a fast analytical prediction algorithm in the evaluation of the accuracy in Bragg peak position estimation using prompt gamma imaging in realistic anatomies.

Material And Methods: Brain, nasal cavity and lung spot scanning treatments were planned on an anthropomorphic phantom. Plan delivery in a clinical proton therapy facility was monitored using a prompt gamma camera.

View Article and Find Full Text PDF

Ion beam therapy promises enhanced tumour coverage compared to conventional radiotherapy, but particle range uncertainties significantly blunt the achievable precision. Experimental tools for range verification in real-time are not yet available in clinical routine. The prompt gamma ray timing method has been recently proposed as an alternative to collimated imaging systems.

View Article and Find Full Text PDF

Proton range monitoring may facilitate online adaptive proton therapy and improve treatment outcomes. Imaging of proton-induced prompt gamma (PG) rays using a knife-edge slit collimator is currently under investigation as a potential tool for real-time proton range monitoring. A major challenge in collimated PG imaging is the suppression of neutron-induced background counts.

View Article and Find Full Text PDF

A prompt gamma (PG) slit camera prototype recently demonstrated that Bragg Peak position in a clinical proton scanned beam could be measured with 1-2 mm accuracy by comparing an expected PG detection profile to a measured one. The computation of the expected PG detection profile in the context of a clinical framework is challenging but must be solved before clinical implementation. Obviously, Monte Carlo methods (MC) can simulate the expected PG profile but at prohibitively long calculation times.

View Article and Find Full Text PDF

Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry.

View Article and Find Full Text PDF

Purpose: In recent years, there has been a movement toward single-detector proton radiography, due to its potential ease of implementation within the clinical environment. One such single-detector technique is the dose ratio method in which the dose maps from two pristine Bragg peaks are recorded beyond the patient. To date, this has only been investigated on the distal side of the lower energy Bragg peak, due to the sharp falloff.

View Article and Find Full Text PDF

Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams.

View Article and Find Full Text PDF

In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector.

View Article and Find Full Text PDF

Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets.

View Article and Find Full Text PDF

It was proposed recently that time-resolved dose measurements during proton therapy treatment by passively scattered beams may be used for in vivo range verification. The method was shown to work accurately in a water tank. In this paper, we further evaluated the potential of the method for more clinically relevant situations where proton beams must pass through regions with significant tissue heterogeneities.

View Article and Find Full Text PDF

Treatments delivered by proton therapy are affected by uncertainties on the range of the beam within the patient, requiring medical physicists to add safety margins on the penetration depth of the beam. To reduce these margins and deliver safer treatments, different projects are currently investigating real-time range control by imaging prompt gammas emitted along the proton tracks in the patient. This study reports on the feasibility, development and test of a new concept of prompt gamma camera using a slit collimator to obtain a one-dimensional projection of the beam path on a scintillation detector.

View Article and Find Full Text PDF

Purpose: To verify water equivalent path length (WEPL) before treatment in proton radiotherapy using time resolved in vivo diode dosimetry.

Methods: Using a passively scattered range modulated proton beam, the output of a diode driving a fast current-to-voltage amplifier is recorded at a number of depths in a water tank. At each depth, a burst of overlapping single proton pulses is observed.

View Article and Find Full Text PDF