Publications by authors named "Pridal L"

Here, we describe molecular engineering of monovalent ultra-long acting two-chain insulin-Fc conjugates. Insulin-Fc conjugates were synthesized using trifunctional linkers with one amino reactive group for reaction with a lysine residue of insulin and two thiol reactive groups used for re-bridging of a disulfide bond within the Fc molecule. The ultra-long pharmacokinetic profile of the insulin-Fc conjugates was the result of concertedly slowing insulin receptor-mediated clearance by (1) introduction of amino acid substitutions that lowered the insulin receptor affinity and (2) conjugating insulin to the Fc element.

View Article and Find Full Text PDF

Introduction: Insulin icodec is a novel, long-acting insulin analog designed to cover basal insulin requirements with once-weekly subcutaneous administration. Here we describe the molecular engineering and the biological and pharmacological properties of insulin icodec.

Research Design And Methods: A number of in vitro assays measuring receptor binding, intracellular signaling as well as cellular metabolic and mitogenic responses were used to characterize the biological properties of insulin icodec.

View Article and Find Full Text PDF

Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution.

View Article and Find Full Text PDF

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, , in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis.

View Article and Find Full Text PDF

Recently, the clinical proof of concept for the first ultra-long oral insulin was reported, showing efficacy and safety similar to subcutaneously administered insulin glargine. Here, we report the molecular engineering as well as biological and pharmacological properties of these insulin analogues. Molecules were designed to have ultra-long pharmacokinetic profile to minimize variability in plasma exposure.

View Article and Find Full Text PDF

Aims/hypothesis: Gastrin has been implicated in islet growth/neogenesis, and proton pump inhibitors (PPIs) have been shown to increase endogenous gastrin levels in animals and humans. Therefore, we investigated the effect of PPIs in a model of type 2 diabetes, Psammomys obesus.

Methods: P.

View Article and Find Full Text PDF

The study was a comparison between a Luminescent Oxygen Channeling Immunoassay (LOCI) and an enzyme-linked immunosorbent assay (ELISA) for quantification of Insulin Aspart (IAsp) in human serum. The advantage of LOCI compared to ELISA is reduced workload and higher throughput. The ELISA assay was performed as published (Andersen et al.

View Article and Find Full Text PDF

The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures.

View Article and Find Full Text PDF

Adipocytes play a central role in whole-body energy homoeostasis. Complex regulatory transcriptional networks control adipogensis, with ligand-dependent activation of PPARgamma (peroxisome proliferator-activated receptor gamma) being a decisive factor. Yet the identity of endogenous ligands promoting adipocyte differentiation has not been established.

View Article and Find Full Text PDF

A weak human glucagon receptor antagonist with an IC50 of 7 microM was initially found by screening of libraries originally targeted to mimic the binding of the glucagon-like peptide (GLP-1) hormone to its receptor. Optimization of this hit for binding affinity for the glucagon receptor led to ligands with affinity in the nanomolar range. In addition to receptor binding, optimization efforts were made to stabilize the molecules against fast metabolic turnover.

View Article and Find Full Text PDF

With the aim of identifying structurally novel, centrally acting histamine H(3) antagonists, arrays of monoacyldiamines were screened. This led to the discovery of a series of 1-alkyl-4-acylpiperazines which were potent antagonists at the human histamine H(3) receptor. The most potent amides had antagonist potencies in the subnanomolar range.

View Article and Find Full Text PDF

A new and improved synthesis of the peroxisome proliferator-activated receptor (PPAR) agonist ragaglitazar applicable for large-scale preparation has been developed. The convergent synthetic procedure was based on a novel enzymatic kinetic resolution step. The conformation of ragaglitazar bound to the hPPARgamma receptor was quite different compared to the single-crystal structures of the l-arginine salt of ragaglitazar.

View Article and Find Full Text PDF

6-Chloro-3-alkylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide derivatives were synthesized and characterized as activators of adenosine 5'-triphosphate (ATP) sensitive potassium (K(ATP)) channels in the beta-cells by measuring effects on membrane potential and insulin release in vitro. The effects on vascular tissue in vitro were measured on rat aorta and small mesenteric vessels. Selected compounds were characterized as competitive inhibitors of [(3)H]glibenclamide binding to membranes of HEK293 cells expressing human SUR1/Kir6.

View Article and Find Full Text PDF

The incretin and enterogastrone hormone, GLP-1, occurs in an amidated (GLP-1 (7-36) amide; 75%) and a glycine-extended (GLP-1 (7-37); 25%) form. Their effects on the endocrine pancreas are similar and their overall (mainly renal) elimination rates appear to equal. Assuming that they might differentially affect non-pancreatic targets we investigated the effect of GLP-1 (7-37) infused at 0.

View Article and Find Full Text PDF

This study assesses the importance of metabolites formed following exogenous administration of glucagon-like peptide-1-(7-36) amide (GLP-1). After subcutaneous (s.c.

View Article and Find Full Text PDF

Glucagon-like peptide 1 (GLP-1) metabolism was studied in halothane-anesthetized pigs (n = 7) using processing-independent (PI) and COOH-terminal (C) radioimmunoassays (RIA) and an enzyme-linked immunosorbent assay (ELISA) specific for biologically active GLP-1. Renal extraction of endogenous GLP-1 was detected by PI-RIA (33.1 +/- 13.

View Article and Find Full Text PDF

The pharmacokinetic properties of glucagon-like peptide-1(7-36)amide (GLP-1(7-37) were compared. Four beagle dogs received on 4 separate occasions s.c.

View Article and Find Full Text PDF

To fate of exogenous glucagon-like peptide I (GLP-I)(7-36) amide was studied in nondiabetic and type II diabetic subjects using a combination of high-pressure liquid chromatography (HPLC), specific radioimmunoassays (RIAs), and a sensitive enzyme-linked immunosorbent assay (ELISA), whereby intact biologically active GLP-I and its metabolites could be determined. After GLP-I administration, the intact peptide could be measured using an NH2-terminally directed RIA or ELISA, while the difference in concentration between these assays and a COOH-terminal-specific RIA allowed determination of NH2-terminally truncated metabolites. Subcutaneous GLP-I was rapidly degraded in a time-dependent manner, forming a metabolite, which co-eluted on HPLC with GLP-I(9-36) amide and had the same immunoreactive profile.

View Article and Find Full Text PDF

A sensitive sandwich enzyme-linked immunoadsorbent assay (ELISA) for determination of exogenous glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) in plasma samples from pharmacokinetic studies is described. The assay employs an N-terminally directed antibody and a C-terminally directed antibody. The ELISA has a working range from 10 to 500 pmol l-1, and can be applied to plasma samples from humans, dogs, pigs, minipigs, cats, rabbits, and rats.

View Article and Find Full Text PDF

Computed tomography in the diagnosis of rhino-otogenic intracranial inflammatory complications made it possible to reduce significantly the morbidity and mortality. It provides more reliable information, than hitherto used pretentious and invasive methods, on the development of inflammatory foci, the dynamics of their development, localization and extent. In correlation with the clinical course and laboratory findings it makes it possible to select an optimal time for operation and to select an optimal surgical approach, or in exceptional instances a conservative procedure.

View Article and Find Full Text PDF