The kinetics of hydrogen evolution reaction (HER) in alkaline media, a reaction central to alkaline water electrolyzers, is not accurately captured by traditional adsorption-based activity descriptors. As a result, the exact mechanism and the main driving force for the water reduction or HER rate remain hotly debated. Here, we perform extensive kinetic measurements on the pH- and cation-dependent HER rate on Pt single-crystal electrodes in alkaline conditions.
View Article and Find Full Text PDFIn this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li).
View Article and Find Full Text PDF