Enhanced invasiveness is one of the defining biological traits of glioblastoma cells, which exhibit an infiltrative nature that severely hinders surgical resection. Among the molecular lesions responsible for GBM aggressiveness, aberrant receptor tyrosine kinase (RTK) signalling is well-characterised. Enhanced RTK signalling directly impacts a myriad of cellular pathways and downstream effectors, which include the Rho GTPase family, key regulators of actin cytoskeletal dynamics.
View Article and Find Full Text PDFBMC Complement Med Ther
November 2022
Background: Glioma stem cells (GSCs) have self-renewal and tumor-initiating capacities involved in drug resistance and immune evasion mechanisms in glioblastoma (GBM).
Methods: Core-GSCs (c-GSCs) were identified by selecting cells co-expressing high levels of embryonic stem cell (ESC) markers from a single-cell RNA-seq patient-derived GBM dataset ( = 28). Induced c-GSCs (ic-GSCs) were generated by reprogramming GBM-derived cells (GBM-DCs) using induced pluripotent stem cell (iPSC) technology.
In vitro viability assays against a representative panel of human cancer cell lines revealed that polyamines and displayed remarkable activity with IC values in the micromolar range. Preliminary research indicated that both compounds promoted G1 cell cycle arrest followed by cellular senescence and apoptosis. The induction of apoptotic cell death involved loss of mitochondrial outer membrane permeability and activation of caspases 3/7.
View Article and Find Full Text PDFPurpose: Although EGFR activation is a hallmark of glioblastoma (GBM), anti-EGFR therapy has so far not yielded the desired effects. Targeting PI3K/Akt has been proposed as a strategy to increase the cellular sensitivity to EGFR inhibitors. Here we evaluated the contribution of FOXO3a, a key Akt target, in the response of GBM cells to EGFR inhibition.
View Article and Find Full Text PDFBackground: (Asteraceae) is an endemic Moroccan subspecies, traditionally named "Hellala" or "Fergoga". It's usually used for its hypoglycemic effect as well as for the treatment of stomacal pain. As far as we know, there is no scientific exploration of anti tumoral activity of extracts.
View Article and Find Full Text PDFA series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indol-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescence-associated β-galactosidase (SA-β-gal) in 8e-treated cells. Prolonged 8e treatment also led to the onset of apoptosis, in correlation with the detection of increased Caspase 3/7 activities.
View Article and Find Full Text PDFMantle Cell Lymphoma (MCL) is an aggressive lymphoma subtype that accounts for 6-8% of non-Hodgkin lymphomas. The disease is mostly incurable and characterized by a continuous pattern of relapse. Major changes have recently been implemented in the management of MCL, but continuous relapses still mark this disease as a challenge for clinicians.
View Article and Find Full Text PDFDifferential redox homeostasis in normal and malignant cells suggests that pro-oxidant-induced upregulation of cellular reactive oxygen species (ROS) should selectively target cancer cells without compromising the viability of untransformed cells. Consequently, a pro-oxidant deviation well-tolerated by nonmalignant cells might rapidly reach a cell-death threshold in malignant cells already at a high setpoint of constitutive oxidative stress. To test this hypothesis, we took advantage of a selected number of amine-pyridine-based Fe(II) complexes that operate as efficient and robust oxidation catalysts of organic substrates upon reaction with peroxides.
View Article and Find Full Text PDFCell internalization is a major issue in drug design. Although squaramide-based compounds are receiving much attention because of their interesting bioactivity, cell uptake and trafficking within cells of this type of compounds are still unknown. In order to monitor the cell internalization process of cyclosquaramide compounds we have prepared two fluorescent probes by covalently linking a fluorescent dye (BODIPY derivative or fluorescein) to a noncytotoxic cyclosquaramide framework.
View Article and Find Full Text PDFBackground: Retama monosperma L. (Boiss.) or Genista monosperma L.
View Article and Find Full Text PDFWe report the synthesis and biological evaluation of a new series of oligosquaramide-based macrocycles as anticancer agents. Compound 7, considered as representative of this series, exhibited significant antiproliferative activity against the NCI-60 human tumor cell line panel, with IC(50) values ranging from 1 to 10 μM. The results show that sensitivity to cyclosquaramides is clearly dependent on cell type, underscoring a degree of biological selectivity.
View Article and Find Full Text PDFEnforced EGFR activation upon gene amplification and/or mutation is a common hallmark of malignant glioma. Small molecule EGFR tyrosine kinase inhibitors, such as erlotinib (Tarceva), have shown some activity in a subset of glioma patients in recent trials, although the reported data on the cellular basis of glioma cell responsiveness to these compounds have been contradictory. Here we have used a panel of human glioma cell lines, including cells with amplified or mutant EGFR, to further characterize the cellular effects of EGFR inhibition with erlotinib.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neurodegenerative disease that affects alpha motoneurons in the spinal cord caused by homozygous deletion or specific mutations in the survival motoneuron-1 (SMN1) gene. Cell migration is critical at many stages of nervous system development; to investigate the role of SMN in cell migration, U87MG astroglioma cells were transduced with shSMN lentivectors and about 60% reduction in SMN expression was achieved. In a monolayer wound-healing assay, U87MG SMN-depleted cells exhibit reduced cell migration.
View Article and Find Full Text PDFThe FOXO3 (Forkhead/winged helix box class O 3) transcription factor is a crucial regulator of haematopoietic cell fate that controls proliferation and apoptosis, among other processes. Despite the central role of FOXO3 as a tumour suppressor and phosphatidylinositol 3-kinase (PI3K)/AKT effector, little is known about its involvement in mantle cell lymphoma (MCL) biology. This study investigated the expression and activity of FOXO3 in MCL cell lines and in primary cultures.
View Article and Find Full Text PDFRnd3/RhoE has two distinct functions, regulating the actin cytoskeleton and cell proliferation. This might explain why its expression is often altered in cancer and by multiple stimuli during development and disease. Rnd3 together with its relatives Rnd1 and Rnd2 are atypical members of the Rho GTPase family in that they do not hydrolyse GTP.
View Article and Find Full Text PDFThe Rho GTPase family member RhoE inhibits RhoA/ROCK signaling to promote actin stress fiber and focal adhesion disassembly. We have previously reported that RhoE also inhibits cell cycle progression and Ras-induced transformation, specifically preventing cyclin D1 translation. Here we investigate the molecular mechanisms underlying those observations.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is a well-defined lymphoid malignancy characterized by a rapid clinical evolution and poor response to current therapeutic protocols. The hallmark genetic alteration of MCL is the t(11;14)(q13;32) chromosomal translocation that leads to the overexpression of cyclin D1. Recently, new molecular alterations of major importance in the pathogenic mechanisms of this disease have been discovered, and have revealed the biological heterogeneity of MCL.
View Article and Find Full Text PDFCisplatin is a conventional chemotherapeutic agent that binds covalently to purine DNA bases and mediates cellular apoptosis. A better understanding of the downstream cellular targets of cisplatin will provide information on its mechanism of action and help to understand the mechanism of drug resistance. In this study, we have investigated the effects of cisplatin in a panel of colon carcinoma cell lines and the involvement of the phosphoinositide-3-kinase/forkhead/winged helix box class O (FOXO) pathway in cisplatin action and resistance.
View Article and Find Full Text PDFWe previously showed that K-Ras is a calmodulin-binding protein. Involvement of this interaction in anterograde and retrograde transport of K-Ras was then suggested. To test this we have analyzed here the domains of K-Ras essential for the interaction with calmodulin.
View Article and Find Full Text PDFMembers of the Rho family of small GTPases are crucial regulators of biological responses in eukaryotic cells, including cytoskeletal dynamics, cell motility and cell cycle progression. In the present review, we summarize our current understanding of the role of Rho proteins in cell cycle control, highlighting the contribution of specific members of the Rho family and their downstream targets to the regulation of key elements from the core cell cycle machinery, mostly involved in the G1/S transition.
View Article and Find Full Text PDFThe Rho GTPase family member RhoE regulates actin filaments partly by binding to and inhibiting ROCK I, a serine/threonine kinase that induces actomyosin contractility. Here, we show that ROCK I can phosphorylate multiple residues on RhoE in vitro. In cells, ROCK I-phosphorylated RhoE localizes in the cytosol, whereas unphosphorylated RhoE is primarily associated with membranes.
View Article and Find Full Text PDFRho GTPases are major regulators of cytoskeletal dynamics, but they also affect cell proliferation, transformation, and oncogenesis. RhoE, a member of the Rnd subfamily that does not detectably hydrolyze GTP, inhibits RhoA/ROCK signaling to promote actin stress fiber and focal adhesion disassembly. We have generated fibroblasts with inducible RhoE expression to investigate the role of RhoE in cell proliferation.
View Article and Find Full Text PDFWe have shown previously (Villalonga, P., López- Alcalá, C., Bosch, M.
View Article and Find Full Text PDF