Carfilzomib (CFZ) is a second-generation proteasome inhibitor showing great efficacy in multiple myeloma treatment, yet its clinical applications for other diseases such as solid cancers are limited due to low aqueous solubility and poor biostability. Ternary polypeptide nanoparticles (tPNPs) are drug carriers that we previously reported to overcome these pharmaceutical limitations by entrapping CFZ in the core of the nanoparticles and protecting the drugs from degradation in biological media. However, preclinical studies revealed that tPNPs would require further improvement in particle stability to suppress initial burst drug release and thus achieve prolonged inhibition of proteasome activity with CFZ against tumor cells in vivo.
View Article and Find Full Text PDFPurpose: The purpose of this study is to evaluate calcium chloride (CaCl) compatibility with commercially available and extemporaneously compounded milrinone, vasopressin, epinephrine, and heparin. This report describes 2 clinical scenarios in which patients experienced intravenous catheter precipitation when receiving multiple continuous infusions, including CaCl, and the results of an in vitro simulation of those scenarios. The hypothesis was that one or a combination of the medications would precipitate with CaCl.
View Article and Find Full Text PDFCarfilzomib (CFZ) is an FDA-approved proteasome inhibitor with antineoplastic properties against various cancers, yet its short blood retention time after intravenous injection (< 30 min) makes clinical applications limited to multiple myeloma. We previously developed ternary polypeptide nanoparticles (tPNPs) as a new nanoparticle formulation of CFZ to overcome these limitations. The formulation was prepared by polyion complexation between poly(ethylene glycol)-poly(L-glutamate) block copolymers (PEG-PLE) and CFZ-cyclodextrin (CD) inclusion complexes, where CDs were positively charged with 7 primary amines attached while PEG-PLE carried 100 carboxyl groups per polymer chain.
View Article and Find Full Text PDFPurpose: To develop a new nanoparticle formulation for a proteasome inhibitor Carfilzomib (CFZ) to improve its stability and efficacy for future in vivo applications.
Methods: CFZ-loaded ternary polypeptide nanoparticles (CFZ/tPNPs) were prepared by using heptakis(6-amino-6-deoxy)-β-cyclodextrin(hepta-hydrochloride) (HaβCD) and azido-poly(ethylene glycol)-block-poly(L-glutamic acid sodium salt) (N-PEG-PLE). The process involved ternary (hydrophobic/ionic/supramolecular) interactions in three steps: 1) CFZ was entrapped in the cavity of HaβCD by hydrophobic interaction, 2) the drug-cyclodextrin inclusion complexes were mixed with N-PEG-PLE to form polyion complex nanoparticles, and 3) the nanoparticles were modified with fluorescent dyes (AFDye 647) for imaging and/or epithelial cell adhesion molecule (EpCAM) antibodies for cancer cell targeting.