In vitro studies using immortalized GT1 cells suggest that hypothalamic astrocytes employ TGFbeta(1) to directly regulate the secretion of GnRH, the neurohormone that controls sexual maturation and adult reproductive function. However, whether such astrocyte-GnRH neuron signaling occurs in vivo is not clear. In the present study, we used in situ hybridization and immunohistochemistry to determine whether astrocytes and GnRH neurons express the molecular components necessary to set in motion communication processes involving TGFbeta(1) signaling.
View Article and Find Full Text PDFThe activation of transforming growth factor alpha (TGFalpha)-erbB-1 and neuregulin-erbB-4 signaling pathways in hypothalamic astrocytes has been shown to play a key role in the process by which the neuroendocrine brain controls luteinizing hormone-releasing hormone (LHRH) secretion. Earlier studies suggested that tanycytes, an ependymoglial cell type of the median eminence, regulate LHRH release during the estrous cycle by undergoing plastic changes that alternatively allow or prevent direct access of the LHRH nerve terminals to the portal vasculature. Neither the molecules responsible for these plastic changes nor the underlying controlling mechanisms have been identified.
View Article and Find Full Text PDFChronic brain hypoperfusion (CBH) using permanent occlusion of both common carotid arteries in an aging rat model, has been shown to mimic human mild cognitive impairment (MCI), an acknowledged high risk condition that often converts to Alzheimer's disease. An aging rat model was used to determine whether hippocampal nitric oxide (NO) is abnormally expressed following CBH for two or eight weeks. At each time point, spatial memory was measured with the Morris water maze and hippocampal A beta 1-40/1-42 concentrations were obtained using sandwich ELISA.
View Article and Find Full Text PDFThe sine qua non event of puberty is an increase in pulsatile release of gonadotrophin hormone releasing hormone (GnRH). It is now clear that this increase and, therefore, the initiation of the pubertal process itself, require both changes in transsynaptic communication and the activation of glia-to-neuron signaling pathways. While neurons that utilize excitatory and inhibitory amino acids as transmitters represent major players in the transsynaptic control of puberty, glial cells utilize a combination of trophic factors and small cell-cell signaling molecules to regulate neuronal function and, thus, promote sexual development.
View Article and Find Full Text PDFThe highly specific alpha(2)-adrenergic agonist, dexmedetomidine, has hypnotic-sedative, anesthetic-sparing and analgesic effects, and it protects neurons against ischemia. The alpha(1)-adrenergic agonist, phenylephrine, does not share dexmedetomidine's pharmacological properties, although both dexmedetomidine and phenylephrine increase free cytosolic Ca(2+) ([Ca(2+)](i)) in astrocytes, and most of dexmedetomidine's actions in the brain are exerted on postjunctional receptors. alpha(2)-Adrenergic receptors are abundant on astrocytes.
View Article and Find Full Text PDFHypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified.
View Article and Find Full Text PDFThe initiation of mammalian puberty requires the activation of hypothalamic neurons secreting the neuropeptide luteinizing hormone-releasing hormone (LHRH). It is thought that this activation is caused by changes in trans-synaptic input to LHRH neurons. More recently, it has been postulated that the pubertal increase in LHRH secretion in female animals also requires neuron-glia signaling mediated by growth factors of the epidermal growth factor (EGF) family and their astrocytic erbB receptors.
View Article and Find Full Text PDFWe have recently shown that the mRNA encoding for a type I receptor for transforming growth factor beta and activin - named B1 - is expressed in hypothalamic areas implicated in gonadotropin-releasing hormone regulation, particularly in estrogen-receptive regions. In the present study, we examined whether ovarian steroids may regulate expression of B1 mRNA in the hypothalamus. Comparing relative levels of B1 mRNA expression in ovariectomized (OVX), OVX + estradiol-treated, and OVX + estradiol + progesterone-treated female rats, we observed that estrogen significantly (p < 0.
View Article and Find Full Text PDFIt has become apparent that galanin as well as proopiomelanocortin-derived peptides, such as beta-endorphin, play an important role in the hypothalamic circuitry that regulates neuroendocrine functions and appetite behavior. We have recently shown that GalR1 and GalR2 galanin receptor mRNAs are expressed in proopiomelanocortin neurons of the arcuate nucleus, suggesting a direct modulatory action of galanin on the proopiomelanocortin neuronal system. In the present study, we investigated the effect of galanin on beta-endorphin release and proopiomelanocortin mRNA expression from male rat mediobasal hypothalamic fragments incubated ex vivo.
View Article and Find Full Text PDFJ Neuroendocrinol
March 2002
In recent years compelling evidence has been provided that cell-cell interactions involving non-neuronal cells, such as glial and endothelial cells, are important in regulating the secretion of GnRH, the neuropeptide that controls both sexual development and adult reproductive function. Modification of the anatomical relationship that exist between GnRH nerve endings and glial cell processes in the external zone of the median eminence modulates the access of GnRH nerve terminals to the portal vasculature during the oestrous cycle. The establishment of direct neuro-haemal junctions between GnRH neuroendocrine terminals and the portal vasculature on the day of pro-oestrus may be critical for the transfer of GnRH upon its release into the fenestrated capillaries of the median eminence.
View Article and Find Full Text PDFTartrate and succinate anions have been intercalated in Zn(3)Al and Zn(2)Cr LDHs. The preparations using either coprecipitation, anion exchange, or reconstruction methods are described. In the case of tartrate-containing LDH, coprecipitation and reconstruction methods have proved to be very limited to lead to pure materials due to the particular reactivity of tartrate anions.
View Article and Find Full Text PDFRecent studies from our laboratory suggested that the vascular endothelium of the median eminence was involved via nitric oxide secretion in the modulation of GnRH release during the estrous cycle. To further investigate that issue, we studied the variations of endothelial nitric oxide synthase protein and mRNA in the median eminence of female rats killed at different time points of the day and/or of the estrous cycle. Endothelial nitric oxide synthase protein levels were measured by Western blot, and endothelial nitric oxide synthase mRNA analysis was performed with semiquantitative RT-PCR (for each time point, n = 4).
View Article and Find Full Text PDFThe purpose of the present study was to determine whether TGF beta, a cytokine secreted by hypothalamic astrocytes, was able to regulate POMC neurons in the arcuate nucleus. In a first set of experiments, mediobasal hypothalamic fragments were exposed to TGF beta(1), and the relative POMC mRNA expression was assessed by in situ hybridization using a radiolabeled POMC riboprobe. The results showed that 4 x 10(-10) M TGF beta(1) was efficient in decreasing significantly the amounts of POMC mRNA (P < 0.
View Article and Find Full Text PDFThe involvement of nitric oxide (NO) as a gaseous neurotransmitter in the hypothalamic control of pituitary LH secretion has been demonstrated. NO, as a diffusible signaling gas, has the ability to control and synchronize the activity of the neighboring cells. NO is secreted at the median eminence (ME), the common termination field for the antehypophysiotropic neurons, under the stimulation of other signaling substances.
View Article and Find Full Text PDFIt is widely assumed that all exercise, regardless of the degree of difficulty or strenuousness, is good (no pain-no gain). In this speculative review of the literature and our research findings we highlight the fact that strenuous exercise taken to the extreme initiates an immune and vascular proinflammatory situation. However, mild cyclic exercise appears to produce health benefits for an individual.
View Article and Find Full Text PDFIt is becoming increasingly clear that nitric oxide (NO), an active free radical formed during the conversion of arginine to citrulline by the enzyme NO synthase (NOS), is a critical neurotransmitter and biological mediator of the neuroendocrine axis. Current evidence suggests that NO modulates the activity of both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal axis. Supporting this hypothesis is the finding that the highest expression of neuronal NOS in the brain is found within the hypothalamus in areas where the cell bodies of the neurons from the different neuroendocrine systems are located.
View Article and Find Full Text PDFBrain Res Mol Brain Res
August 2000
Nitric oxide (NO) as well as beta-endorphin are involved in the neuroendocrine control of gonadotropin-releasing hormone (GnRH) secretion. Recently, morphological and microdialysis experiments have suggested that beta-endorphin may exert an inhibitory influence on NO release in the preoptic area of rat hypothalamus. The present study determines if the mu opioid receptor mRNA is expressed in neuronal NO synthase (nNOS)-immunopositive neurons and if this expression varies among the regions of the basal forebrain being examined.
View Article and Find Full Text PDFRecent Prog Horm Res
November 2000
It is becoming increasingly clear that astroglial cells are active participants in the process by which information is generated and disseminated within the central nervous system (CNS). In the hypothalamus, astrocytes regulate the secretory activity of neuroendocrine neurons. They contribute to facilitating sexual development by stimulating the release of luteinizing hormone-releasing hormone (LHRH), the neuropeptide that controls sexual development, from LHRH neurons.
View Article and Find Full Text PDFWe tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase activity in human granulocytes by acting on a cell surface estrogen receptor (ER). The release of nitric oxide was measured in real time with an amperometric probe. Exposure of granulocytes to 17beta-estradiol stimulated NO release within seconds in a concentration-dependent manner.
View Article and Find Full Text PDFThe present study was designed to determine whether transforming growth factor (TGF)beta and/or activin participate in the regulation of the gonadotropin releasing hormone (GnRH) neuroendocrine axis in vivo. Single-label in situ hybridization histochemistry was used to determine the anatomical distribution of a TGFbeta and activin type I receptor (B1) mRNA, in the adult female rat hypothalamic areas that are known to be important sites for the regulation of reproduction. Dual-label in situ hybridization histochemistry was performed to determine whether B1 mRNA was expressed in GnRH neurones.
View Article and Find Full Text PDFPrevious studies have shown that galanin-containing fibers make synaptic contacts with POMC neurons in the arcuate nucleus. However, the ability of POMC neurons to express galanin receptors has never been assessed. The present study was designed to investigate whether POMC neurons express galanin receptor messenger RNA (mRNA) and whether testosterone could modulate galanin receptor gene expression.
View Article and Find Full Text PDFWe have shown previously at the ultrastructural level that morphological changes occur in the external zone of the median eminence allowing certain GnRH nerve terminals to contact the pericapillary space on the day of proestrus. The present study was designed to determine whether the intrinsic determinant of neuronal outgrowth, growth-associated protein-43 (GAP-43), was expressed in GnRH neurons of adult female rats, and whether its expression varied throughout the estrous cycle. To accomplish this, we perfusion-fixed groups of adult female rats at 0800 and 1600 h on diestrous day 2 (diestrous II), at 0800 h and 1600 h on proestrus, and at 0800 and 1600 h on estrus (n = 4 rats/group) and used double labeling in situ hybridization and quantification to compare the levels of GAP-43 messenger RNA (mRNA) in cells coexpressing GnRH mRNA.
View Article and Find Full Text PDFBackground: Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiological levels of estrogen on NO release from human internal thoracic artery endothelia and human arterial endothelia in culture.
Methods And Results: We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase activity in human endothelial cells by acting on a cell-surface receptor.
Despite intense investigation, the demonstration of morphological plasticity in the external zone of the median eminence concerning the gonadotropin-releasing hormone system has never been reported. In this study, we investigate whether dynamic transformations of the gonadotropin-releasing hormone nerve terminals and/or tanycytes in the external zone of the median eminence of the hypothalamus occurred during the rat estrous cycle, by following individual gonadotropin-releasing hormone-immunoreactive nerve terminals on serial ultrathin sections observed by electron microscopy. Female rats were killed at 16.
View Article and Find Full Text PDFPrevious studies have shown that galanin plays an important role in the regulation of gonadotropin releasing hormone (GnRH) release. At present, it is not known if this role is exerted by direct or indirect interactions between galanin producing neurones and GnRH neurones. The objective of this study was to determine whether or not GnRH neurones could express galanin receptor Gal-R1 mRNA.
View Article and Find Full Text PDF