Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFTRPV6 calcium channel is a prospective target in prostate cancer (PCa) since it is not expressed in healthy prostate while its expression increases during cancer progression. Despite the role of TRPV6 in PCa cell survival and apoptotic resistance has been already established, no reliable tool to target TRPV6 channel in vivo and thus to reduce tumor burden is known to date. Here we report the generation of mouse monoclonal antibody mAb82 raised against extracellular epitope of the pore region of the channel.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC.
View Article and Find Full Text PDFExcessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS).
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) stands as a highly aggressive and lethal cancer, characterized by a grim prognosis and scarce treatment alternatives. Within this context, TRPV6, a calcium-permeable channel, emerges as a noteworthy candidate due to its overexpression in various cancers, capable of influencing the cell behavior in different cancer entities. Nonetheless, the exact expression pattern and functional significance of TRPV6 in the context of PDAC remains enigmatic.
View Article and Find Full Text PDFTransient receptor potential vanilloid subfamily member 6 (TRPV6), a highly calcium-selective channel, has been shown to play a significant role in calcium homeostasis and to participate both and in growth, cell survival, and drug resistance of prostate cancer. Its role and the corresponding calcium-dependent pathways were mainly studied in hormone-dependent human prostate cancer cell lines, often used as a model of early-stage prostate cancers. The goal of the present study was to describe the TRPV6-specific phenotype and signaling pathways it is involved in, using castration-resistant prostate cancer cell lines.
View Article and Find Full Text PDFPancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors.
View Article and Find Full Text PDFPancreatic Ductal Adenocarcinoma (PDAC) is characterized by an acidic microenvironment, which contributes to therapeutic failure. So far there is a lack of knowledge with respect to the role of the acidic microenvironment in the invasive process. This work aimed to study the phenotypic and genetic response of PDAC cells to acidic stress along the different stages of selection.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2023
Golgi cation homeostasis is known to be crucial for many cellular processes including vesicular fusion events, protein secretion, as well as for the activity of Golgi glycosyltransferases and glycosidases. TMEM165 was identified in 2012 as the first cation transporter related to human glycosylation diseases, namely the Congenital Disorders of Glycosylation (CDG). Interestingly, divalent manganese (Mn) supplementation has been shown to suppress the observed glycosylation defects in TMEM165-deficient cell lines, thus suggesting that TMEM165 is involved in cellular Mn homeostasis.
View Article and Find Full Text PDFThe TRPV6 calcium channel is known to be up-regulated in various tumors. The efforts to target the TRPV6 channel in vivo are still ongoing to propose an effective therapy against cancer. Here, we report the generation of two antibodies raised against extracellular epitopes corresponding to the extracellular loop between S1 and S2 (rb79) and the pore region (rb82).
View Article and Find Full Text PDFNonsense mutations are responsible for around 10% of cases of genetic diseases, including cystic fibrosis. 2,6-diaminopurine (DAP) has recently been shown to promote efficient readthrough of UGA premature stop codons. In this study, we show that DAP can correct a nonsense mutation in the Cftr gene in vivo in a new CF mouse model, in utero, and through breastfeeding, thanks, notably, to adequate pharmacokinetic properties.
View Article and Find Full Text PDFThough the first discovery of TRPV6 channel expression in various tissues took place in the early 2000s, reliable tools for its protein detection in various cells and tissues are still missing. Here we show the generation and validation of rabbit polyclonal anti-TRPV6 channel antibodies (rb79-82) against four epitopes of 15 amino acids. Among them, only one antibody, rb79, was capable of detecting the full-length glycosylated form of the TRPV6 channel at around 100 kDa.
View Article and Find Full Text PDFAim: Inositol 1,4,5-trisphosphate receptor (IPR) is a ubiquitous calcium (Ca) channel involved in the regulation of cellular fate and motility. Its modulation by anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) plays an important role in cancer progression. Disrupting this interaction could overcome apoptosis avoidance, one of the hallmarks of cancer, and is, thus, of great interest.
View Article and Find Full Text PDFThe sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis.
View Article and Find Full Text PDFPancreatic stellate cell (PSC) activation is a major event occurring during pancreatic ductal adenocarcinoma (PDAC) development. Up to now mechanisms underlying their activation by mechanical cues such as the elevated tissue pressure in PDAC remain poorly understood. Here we investigate the role of one potential mechano-transducer, TRPC1 ion channel, in PSC activation.
View Article and Find Full Text PDFSolid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones.
View Article and Find Full Text PDFCellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts.
View Article and Find Full Text PDFThe transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer.
View Article and Find Full Text PDFThe mammalian exclusive Orai3 channel participates in the generation and/or modulation of two independent Ca currents, the store-operated current, I, involving functional interactions between the stromal interaction molecules (STIM), STIM1/STIM2, and Orai1/Orai2/Orai3, as well as the store-independent arachidonic acid (AA) (or leukotriene C4)-regulated current I, which involves Orai1, Orai3 and STIM1. Overexpression of functional Orai3 has been described in different neoplastic cells and cancer tissue samples as compared to non-tumor cells or normal adjacent tissue. In these cells, Orai3 exhibits a cell-specific relevance in Ca influx.
View Article and Find Full Text PDFPancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia.
View Article and Find Full Text PDFActivated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor (TGF) secretion. Over the past years, the involvement of Ca channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca channel in these two PSC activation processes.
View Article and Find Full Text PDFThe transient receptor potential channels (TRPs) have been related to several different physiologies that range from a role in sensory physiology (including thermo- and osmosensation) to a role in some pathologies like cancer. The great diversity of functions performed by these channels is represented by nine sub-families that constitute the TRP channel superfamily. From the mid-2000s, several reports have shown the potential role of the TRP channels in cancers of multiple origin.
View Article and Find Full Text PDF