Publications by authors named "Pretty Susan Phillip"

Retroviral RNA packaging signal (ψ) allows the preferential packaging of genomic RNA into virus particles through its interaction with the nucleocapsid protein. The specificity of this interaction came into question when it was shown that primate retroviruses, such as HIV-1, could cross-package RNA from its simian cousin, SIV, and vice versa and that feline retrovirus, FIV could cross-package RNA from a distantly related primate retrovirus, MPMV. To study the generality of this phenomenon further, we determined whether there is a greater packaging restriction between the lentiviral class of retroviruses (HIV-1 and SIV) and a non-lentivirus, MPMV.

View Article and Find Full Text PDF

During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5' end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5' untranslated region (UTR) and Gag.

View Article and Find Full Text PDF

Background: The mouse mammary tumor virus (MMTV) is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy.

View Article and Find Full Text PDF

The mouse mammary tumor virus (MMTV) is a type B retrovirus that is unique from other retroviruses in having multiple "tissue specific" and "hormone inducible" promoters. This unique feature has lead to the increasing interest in studying the biology of MMTV replication with the ultimate goal of developing MMTV based vectors for potentially targeted human gene therapy. In this report, we describe, for the first time, the establishment of an in vivo genetic complementation assay to study various aspects of MMTV replication.

View Article and Find Full Text PDF

This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR.

View Article and Find Full Text PDF

The packaging determinants of feline immunodeficiency virus (FIV) consist of two discontinuous core regions, extending from R to approximately 150 bp of the 5' untranslated region and the first approximately 100 bp of gag. However, the role of sequences intervening between the core regions in packaging has not been clear. A mutational analysis was conducted to determine whether the intervening sequences played a role in FIV RNA packaging, using an in vivo packaging assay complemented with semiquantitative reverse transcriptase PCR.

View Article and Find Full Text PDF