Annu Int Conf IEEE Eng Med Biol Soc
July 2023
This paper presents a method for identifying parameter values for a double parallel resistor/constant-phase-element model of the electrode-skin interface for individual silver and silver/silver chloride electrodes. The impedance of each electrode was measured in five from 1 Hz-10 kHz. Phase features of these data were used to guide initial estimates for parameter values which were refined using a least squares algorithm.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Spectroscopy is utilised extensively in medical sensing technology. Typically, hand-held spectroscopy equipment uses miniature narrow-band light emitting diodes (LEDs) and photodiodes to emit and detect light, respectively. Photodiodes typically absorb light across a wide spectra so measurements can be corrupted by surrounding light.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
A physical system to generate a PPG-mimicking signal was designed and validated using everyday low-cost components to aid in medical sensor design. The pulse waveform was created by driving a working fluid into a silicone tube and changing the pressure within it. The corresponding waveform mimics a PPG signal through an artery, is adaptable, and repeatable.
View Article and Find Full Text PDFBackground And Aim: Flexible sigmoidoscopy (FS) without analgesia or sedation can be unpleasant for patients, resulting in unsatisfactory examinations. Prior familiarization videos (FVs) and intra-procedural Entonox inhalation have shown inconsistent effects. This study investigated their effects on undesirable participant factors (anxiety, stress, discomfort, pain, satisfaction, later unpleasant recall of procedure, and vasovagal reactions) and clinical effectiveness (extent of bowel seen, lesions detected, and procedural/recovery times).
View Article and Find Full Text PDFAcquiring patient physiological waveforms is useful for studying hemodynamic management and developing medical monitoring systems. A low cost, Arduino controlled data acquisition system acquires arterial pressure waveforms (Edwards Lifesciences TruWave compatible) and measures fluid infusion rate using hanging scales. This system can be used at the same time as a clinical monitor, enabling recording of patient arterial pressure and fluid delivery for clinical research.
View Article and Find Full Text PDFBackground: Intravenous fluid infusions are an important therapy for patients with circulatory shock. However, it is challenging to predict how patients' cardiac stroke volume (SV) will respond, and thus identify how much fluids should be delivered, if any. Model-predicted SV time-profiles of response to fluid infusions could potentially be used to guide fluid therapy.
View Article and Find Full Text PDFWe describe observations of sea lamprey (Petromyzon marinus) and striped bass (Morone saxatilis) incursions into Labrador, Canada. While P. marinus have been periodically observed in similar latitudes, their numbers have conspicuously increased in estuarine environments in 2020.
View Article and Find Full Text PDFBackground: Determining physiological mechanisms leading to circulatory failure can be challenging, contributing to the difficulties in delivering effective hemodynamic management in critical care. Continuous, non-additionally invasive monitoring of preload changes, and assessment of contractility from Frank-Starling curves could potentially make it much easier to diagnose and manage circulatory failure.
Method: This study combines non-additionally invasive model-based methods to estimate left ventricle end-diastolic volume (LEDV) and stroke volume (SV) during hemodynamic interventions in a pig trial (N = 6).
Background And Objectives: Accurate, reproducible, and reliable real-time clinical measurement of stroke volume (SV) is challenging. To accurately estimate arterial mechanics and SV by pulse contour analysis, accounting for wave reflection, such as by a tube-load model, is potentially important. This study tests for the first time whether a dynamically identified tube-load model, given a single peripheral arterial input signal and pulse transit time (PTT), provides accurate SV estimates during hemodynamic instability.
View Article and Find Full Text PDFSurface Electromyography (sEMG) is the non-invasive measurement of skeletal muscle contraction bio-potentials. Measuring sEMG of a stimulated muscle can prove particularly difficult due to large scale and long lasting stimulation-induced artefacts: if an sEMG device does not account for such artefacts, its measurements can be swamped and components damaged. sEMG has been used in a wide range of clinical and biomedical fields, providing measures such as muscular fatigue and subject intent.
View Article and Find Full Text PDFBackground: Hybrid exoskeletons are a recent development which combine Functional Electrical Stimulation with actuators to improve both the mental and physical rehabilitation of stroke patients. Hybrid exoskeletons have been shown capable of reducing the weight of the actuator and improving movement precision compared to Functional Electrical Stimulation alone. However little attention has been given towards the ability of hybrid exoskeletons to reduce and manage Functional Electrical Stimulation induced fatigue or towards adapting to user ability.
View Article and Find Full Text PDFPurpose: This paper presents an assessment of an automated and personalized stochastic targeted (STAR) glycemic control protocol compliance in Malaysian intensive care unit (ICU) patients to ensure an optimized usage.
Patients And Methods: STAR proposes 1-3 hours treatment based on individual insulin sensitivity variation and history of blood glucose, insulin, and nutrition. A total of 136 patients recorded data from STAR pilot trial in Malaysia (2017-quarter of 2019*) were used in the study to identify the gap between chosen administered insulin and nutrition intervention as recommended by STAR, and the real intervention performed.
Background And Objectives: Stroke volume (SV) and cardiac output (CO) are important metrics for hemodynamic management of critically ill patients. Clinically available devices to continuously monitor these metrics are invasive, and less invasive methods perform poorly during hemodynamic instability. Pulse wave velocity (PWV) could potentially improve estimation of SV and CO by providing information on changing vascular tone.
View Article and Find Full Text PDFBackground And Objective: Lung mechanics measurements provide clinically useful information about disease progression and lung health. Currently, there are no commonly practiced methods to non-invasively measure both resistive and elastic lung mechanics during tidal breathing, preventing the important information provided by lung mechanics from being utilised. This study presents a novel method to easily assess lung mechanics of spontaneously breathing subjects using a dynamic elastance, single-compartment lung model.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2020
Background And Objective: Patients are required to support their cheeks during breath-occluding lung function tests. This prevents cheek expansion which would alter pressure measured at the mouth, and, consequently, lung mechanics measurements. To date, the effect of cheek support on airway resistance measurements has been assessed.
View Article and Find Full Text PDFSurface electromyography (sEMG) data was captured for three able-body subjects, from their right biceps brachii using the POLE sensor outlined in "Low-cost active electromyography" [1]. Data was captured for 45 seconds per subject, resulting in 12-21 contractions per subject. The raw data files, along with a sinusoidal waveform have been provided.
View Article and Find Full Text PDFJ Clin Monit Comput
February 2021
Identification of end systole is often necessary when studying events specific to systole or diastole, for example, models that estimate cardiac function and systolic time intervals like left ventricular ejection duration. In proximal arterial pressure waveforms, such as from the aorta, the dicrotic notch marks this transition from systole to diastole. However, distal arterial pressure measures are more common in a clinical setting, typically containing no dicrotic notch.
View Article and Find Full Text PDFBackground: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.
Methods And Design: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS.
Background: Early detection of breast cancer, combined with effective treatment, can reduce mortality. Millions of women are diagnosed with breast cancer and many die every year globally. Numerous early detection screening tests have been employed.
View Article and Find Full Text PDFComput Methods Programs Biomed
April 2020
Background And Objective: Model-based lung mechanics monitoring can provide clinically useful information for guiding mechanical ventilator treatment in intensive care. However, many methods of measuring lung mechanics are not appropriate for both fully and partially sedated patients, and are unable provide lung mechanics metrics in real-time. This study proposes a novel method of using lung mechanics identified during passive expiration to estimate inspiratory lung mechanics for spontaneously breathing patients.
View Article and Find Full Text PDFBackground And Objectives: Cardiovascular dysfunction can be more effectively monitored and treated, with accurate, continuous, stroke volume (SV) and/or cardiac output (CO) measurements. Since direct measurements of SV/CO are highly invasive, clinical measures are often discrete, or if continuous, can require recalibration with a discrete SV measurement after hemodynamic instability. This study presents a clinically applicable, non-additionally invasive, physiological model-based, SV and CO measurement method, which does not require recalibration during or after hemodynamic instability.
View Article and Find Full Text PDFBackground: Glycaemic control in the intensive care unit is dependent on effective prediction of patient insulin sensitivity (SI). The stochastic targeted (STAR) controller uses a 2D stochastic model for prediction, with current SI as an input and future SI as an output.
Methods: This paper develops an extension of the STAR 2D stochastic model into 3D by adding blood glucose (G) as an input.
Stress-induced hyperglycemia is common in critically ill patients. A few forms of model-based glycemic control have been introduced to reduce this phenomena and among them is the automated STAR protocol which has been used in the Christchurch and Gyulá hospitals' intensive care units (ICUs) since 2010. This article presents the pilot trial assessment of STAR protocol which has been implemented in the International Islamic University Malaysia Medical Centre (IIUMMC) Hospital ICU since December 2017.
View Article and Find Full Text PDFMechanical ventilation is a widely used breathing support for patients in intensive care. Its effects on the respiratory and cardiovascular systems are complex and difficult to predict. This work first presents a minimal mathematical model representing the mechanics of both systems and their interaction, in terms of flows, pressures and volumes.
View Article and Find Full Text PDF