Publications by authors named "Pretel R"

The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.

View Article and Find Full Text PDF

The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software.

View Article and Find Full Text PDF

The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions.

View Article and Find Full Text PDF

Anaerobic membrane bioreactors (AnMBRs) enable energy recovery from wastewater while simultaneously achieving high levels of treatment. The objective of this study was to elucidate how detailed design and operational decisions of submerged AnMBRs influence the technological, environmental, and economic sustainability of the system across its life cycle. Specific design and operational decisions evaluated included: solids retention time (SRT), mixed liquor suspended solids (MLSS) concentration, sludge recycling ratio (r), flux (J), and specific gas demand per membrane area (SGD).

View Article and Find Full Text PDF

The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33°C), and a controlled temperature (33°C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study: (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal.

View Article and Find Full Text PDF

The objective of the study was to determine the osteoconductive potential of bovine-derived porous hydroxyapatite (HA) in combination with demineralized freeze-dried bone allograft (DFDBA) as an alternative to autogenous grafting in the maxillary sinus. The study involved 5 patients treated with 2-stage sinus elevation procedures using a combination of DFDBA and Osteograf/N 300 and 700. The healing time before implant placement ranged from 6 to 13 months.

View Article and Find Full Text PDF

The yeast ALG7 gene functions by initiating the synthesis of the dolichol-linked oligosaccharide precursor and plays an important role in the control of protein N-glycosylation. The levels of ALG7 multiple transcripts are modulated by the physiological status of the cell and environmental cues, and deregulation of their abundance is deleterious to several cellular functions. Since ALG7 mRNAs are unstable, we investigated the role of these transcripts' half-lives in determining their steady-state levels.

View Article and Find Full Text PDF

The dolichol pathway serves in the synthesis of the dolichol-linked oligosaccharide precursor for protein N-glycosylation. Recently, we reported that mRNAs of genes that function at the early steps in the dolichol pathway in yeast, ALG7, ALG1 and ALG2, were co-ordinately induced following growth stimulation of G0-arrested cells in a manner similar to that of the transcripts of the early growth response genes (Kukuruzinska, M.A.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae ALG7 gene, which functions by initiating the dolichol pathway of protein N-glycosylation, displays properties of an early growth-response gene. To initiate studies of the involvement of ALG7 in cellular proliferation, we have now more precisely analyzed ALG7 expression in the G1 phase of cell cycle. We show that the rapid rate of ALG7 mRNA accumulation following growth stimulation was attenuated soon thereafter and that ALG7 growth induction occurred irrespective of alpha-factor.

View Article and Find Full Text PDF