Publications by authors named "Preston R Hoobler"

The synthesis of novel aluminyl anion complexes has been well exploited in recent years. Moreover, the elucidation of the structure and reactivity of these complexes opens the path toward a new understanding of low-valent aluminum complexes and their chemistry. This work computationally treats the substituent effect on aluminyl anions to discover suitable alternatives for H activation at a high level of theory utilizing coupled-cluster techniques extrapolated to the complete basis set.

View Article and Find Full Text PDF

Aluminyl anions are low-valent aluminum species bearing a lone pair of electrons and a negative charge. These systems have drawn recent synthetic interest for their nucleophilic nature, allowing for the activation of σ-bonds, and have been proposed as a pathway to hydrogen energy storage. In this research, we provide high-level geometries and energies for both the simplest aluminyl anion (AlH) and several substituted derivatives.

View Article and Find Full Text PDF

The lowest lying singlet and triplet states of HBCN-, HCCN, HNCN+, HAlCN-, HSiCN, HPCN+, HGaCN-, HGeCN, and HAsCN+ were studied using the CCSDT(Q)/CBS//CCSD(T)/aug-cc-pVQZ level of theory. Periodic trends in geometries, singlet-triplet gaps, and barriers to linearity were established and analyzed. The first row increasingly favors the triplet state, with a singlet-triplet gap (ΔEST = Esinglet - Etriplet) of 3.

View Article and Find Full Text PDF

This research presents an ab initio characterization of the potential energy surface for the methylamine plus D oxygen atom reaction, which may be relevant to interstellar chemistry. Geometries and harmonic vibrational frequencies were determined for all stationary points at the CCSD(T)/aug-cc-pVTZ level of theory. The focal point method along with several additive corrections was used to obtain reliable CCSDT(Q)/CBS potential energy surface features.

View Article and Find Full Text PDF

In this work we provide high level ab initio treatments of the structures, vibrational frequencies, and electronic energies of the HCN monomer and dimer systems along with several isotopologues. The plethora of information related to this system within the literature is summarized and serves as a basis for comparison with the results of this paper. The geometry of the dimer and monomer are reported at the all electroncoupled-cluster singles, doubles, and perturbative triples level of theory [AE-CCSD(T)] with the correlation consistent quadruple-zeta quality basis sets with extra core functions (cc-pCVQZ) from Dunning.

View Article and Find Full Text PDF

The spectroscopic identification of Bi4 has been very elusive. Two constitutional Bi4 isomers of Td and C2v symmetry are investigated and each is found to be a local energetic minimum. The optimized geometries and vibrational frequencies of these two isomers are obtained at the CCSD(T)/cc-pVQZ-PP level of theory, utilizing the Stoll, Metz, and Dolg 60-electron effective core potential.

View Article and Find Full Text PDF

The n-propylperoxy radical has been described as a molecule of critical importance to studies of low temperature combustion. Ab initio methods were used to study this three-carbon alkylperoxy radical, normal propylperoxy. Reliable CCSD(T) (coupled-cluster theory, incorporating single, double, and perturbative triple)/ANO0 geometries were predicted for the molecule's five rotamers.

View Article and Find Full Text PDF