Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood.
View Article and Find Full Text PDFArticular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers-the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development.
View Article and Find Full Text PDFHistone methyltransferases EZH1 and EZH2 catalyse the trimethylation of histone H3 at lysine 27 (H3K27), which serves as an epigenetic signal for chromatin condensation and transcriptional repression. Genome-wide associated studies have implicated EZH2 in the control of height and mutations in EZH2 cause Weaver syndrome, which includes skeletal overgrowth. Here we show that the combined loss of Ezh1 and Ezh2 in chondrocytes severely impairs skeletal growth in mice.
View Article and Find Full Text PDFPurpose Of Review: Recent basic studies have yielded important new insights into the molecular mechanisms that regulate growth locally. Simultaneously, clinical studies have identified new molecular defects that cause growth failure and overgrowth, and genome-wide association studies have elucidated the genetic basis for normal human height variation.
Recent Findings: The Hippo pathway has emerged as one of the major mechanisms controlling organ size.