Comput Methods Programs Biomed
May 2024
Background And Objective: Training deep learning models for medical image segmentation require large annotated datasets, which can be expensive and time-consuming to create. Active learning is a promising approach to reduce this burden by strategically selecting the most informative samples for segmentation. This study investigates the use of active learning for efficient left ventricle segmentation in echocardiography with sparse expert annotations.
View Article and Find Full Text PDFDoppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce variability, prompting the need for automated solutions. This study introduces an innovative deep learning model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent from Electrocardiogram information.
View Article and Find Full Text PDF