Background: Seasonal influenza infects 5-20% of people every year in the United States, resulting in hospitalizations, deaths, and adverse economic impacts. To mitigate these impacts, influenza vaccines are developed and distributed annually; however, growing evidence suggests that vaccine effectiveness (VE) wanes over the course of a flu season. Delaying influenza vaccination for older adults has attracted attention as a potential public health strategy.
View Article and Find Full Text PDFBefore visual information from the retina reaches primary visual cortex (V1), it is dynamically filtered by the lateral geniculate nucleus (LGN) of the thalamus, the first location within the visual hierarchy at which nonretinal structures can significantly influence visual processing. To explore the form and dynamics of geniculate filtering we used data from monosynpatically connected pairs of retinal ganglion cells (RGCs) and LGN relay cells in the cat that, under anesthetized conditions, were stimulated with binary white noise and/or drifting sine-wave gratings to train models of increasing complexity to predict which RGC spikes were relayed to cortex, what we call "relay status." In addition, we analyze and compare a smaller dataset recorded in the awake state to assess how anesthesia might influence our results.
View Article and Find Full Text PDFSynchronization of movement enhances cooperation and trust between people. However, the degree to which individuals can synchronize with each other depends on their ability to perceive the timing of others' actions and produce movements accordingly. Here, we introduce an assistive device-a multi-person adaptive metronome-to facilitate synchronization abilities.
View Article and Find Full Text PDFRetinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN), where they are processed in burst or tonic response mode. Burst mode occurs when LGN neurons are sufficiently hyperpolarized for T-type Ca channels to deinactivate, allowing them to open in response to depolarization, which can trigger a high-frequency sequence of Na-based spikes (i.e.
View Article and Find Full Text PDFVisual information processed in the retina is transmitted to primary visual cortex via relay cells in the lateral geniculate nucleus (LGN) of the dorsal thalamus. Although retinal ganglion cells are the primary source of driving input to LGN neurons, not all retinal spikes are transmitted to the cortex. Here, we investigate the relationship between stimulus contrast and retinogeniculate communication and test the hypothesis that both the time course and strength of retinogeniculate interactions are dynamic and dependent on stimulus contrast.
View Article and Find Full Text PDF