Coronary artery disease leads to over 360,000 deaths annually in the United States, and off-the-shelf bypass graft options are currently limited and/or have high failure rates. Tissue-engineered vascular grafts (TEVGs) present an attractive option, though the promising mesenchymal stem cell (MSC)-based implants face uncertain regulatory pathways. In this study, "artificial MSCs" (ArtMSCs) were fabricated by encapsulating MSC-conditioned media (CM) in poly(lactic-co-glycolic acid) microparticles.
View Article and Find Full Text PDFProper lung function requires the maintenance of a tight endothelial barrier while simultaneously permitting the exchange of macromolecules and fluids to underlying tissue. Disruption of this barrier results in an increased vascular permeability in the lungs, leading to acute lung injury. In this study, we set out to determine whether transcriptional targets of Notch signaling function to preserve vascular integrity.
View Article and Find Full Text PDFAdv Drug Deliv Rev
October 2023
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues.
View Article and Find Full Text PDFVarious signals in tissue microenvironments are often unevenly distributed around cells. Cellular responses to asymmetric cell-matrix adhesion in a 3D space remain generally unclear and are to be studied at the single-cell resolution. Here, the authors developed a droplet-based microfluidic approach to manufacture a pure population of single cells in a microscale layer of compartmentalized 3D hydrogel matrices with a tunable spatial presentation of ligands at the subcellular level.
View Article and Find Full Text PDFSilk fibroin (SF) is a natural well-known biomaterial that has widely been explored for various tissue engineering applications with great success. Herein, we describe the methodology for fabricating two different types of tubular silk scaffolds aimed for vascular grafting. The first method emphasizes the use of very thin (10-15μm) silk films with unidirectional longitudinal micro-patterns, followed by their sequential rolling, which results in a multilayered tubular graft mimicking native-like cellular composition.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling.
View Article and Find Full Text PDFVascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties.
View Article and Find Full Text PDFCell-free polymeric tissue-engineered vascular grafts (TEVGs) have shown great promise towards clinical translation; however, their limited bioactivity and remodeling ability challenge this cause. Here, a novel cell-free bioresorbable small diameter silk TEVG system functionalized with decellularized human Wharton's jelly (dWJ) matrix is developed and successfully implanted as interposition grafts into rabbit jugular vein. Implanted TEVGs remain patent for two months and integrate with host tissue, demonstrating neo-tissue formation and constructive remodeling.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine if non-mulberry varieties of silk are suitable for the culture of corneal endothelium (CE).
Methods: Aqueous silk fibroin derived from Philosamia ricini (PR), Antheraea assamensis (AA), and Bombyx mori (BM) were cast as approximately 15 µm films with and without pores on which human CE cells were cultured. Tensile strength, elasticity, transmittance in visible range, and degradation properties of the films were characterised.
Vascular tissue engineering is aimed at developing regenerative vascular grafts to restore tissue function by bypassing or replacing defective arterial segments with tubular biodegradable scaffolds. Scaffolds are often combined with stem or progenitor cells to prevent acute thrombosis and initiate scaffold remodeling. However, there are limitations to cell-based technologies regarding safety and clinical translation.
View Article and Find Full Text PDFFunctional impairment of vascular cells is associated with cardiovascular pathologies. Recent literature clearly presents evidence relating cell microenvironment and their function. It is crucial to understand the cell-material interaction while designing a functional tissue engineered vascular graft.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2019
Fabrication of porous and biologically inspired biomaterials that mimic the formation of microstructural structures of nacre in the form of calcite (CaCO) and evaluation of the biocompatibility of such organic-inorganic composite scaffold for bone tissue engineering, are focus of this paper. Nacre's self-assembly characteristics are concerned about the development of calcite filled biomineralized scaffold following the nature based biomineralization process and biomimetic applications. The PVP-CMC hydrogel film, comprised of PVP:0.
View Article and Find Full Text PDFIslet transplantation is considered the most promising treatment for type 1 diabetes. However, the clinical success is limited by islet dysfunction in long-term culture. In this study, we have utilized the rapid self-gelation and injectability offered by blending of mulberry silk (Bombyx mori) with non-mulberry (Antheraea assama) silk, resulting in a biomimetic hydrogel.
View Article and Find Full Text PDFDesign and fabrication of a smart bio-based polymeric material with potent biocompatibility and high performance still remain a challenge in the biomedical realm. In this context, a potential smart suture was fabricated from starch modified hyperbranched polyurethane (HPU) nanocomposites with different weight percentages of reduced carbon dots for the first time. The desired mechanical (tensile strength: 32.
View Article and Find Full Text PDFTwo new irregular hexagons (6 and 7) were synthesized from a pyrazine motif containing an organometallic acceptor clip [bearing platinum(II) centers] and different neutral donor ligands (4,4'-bipyridine or pyrazine) using a coordination-driven self-assembly protocol. The two-dimensional supramolecules were characterized by multinuclear NMR, mass spectrometry, and elemental analyses. Additionally, one of the macrocycles (6) was characterized by single-crystal X-ray analyses.
View Article and Find Full Text PDFDevelopment of a bio-based smart implantable material with multifaceted attributes of high performance, potent biocompatibility and inherent antibacterial property, particularly against drug resistant bacteria, is a challenging task in biomedical domain. Addressing these aspects at the bio-nano interface, we report the in situ fabrication of starch modified hyperbranched polyurethane (HPU) nanocomposites by incorporating different weight percentages of carbon dot-silver nanohybrid during polymerization process. This nanohybrid and its individual nanomaterials (Ag and CD) were prepared by facile hydrothermal approaches and characterized by various instrumental techniques.
View Article and Find Full Text PDFComposite biomaterials as artificial bone graft materials are pushing the present frontiers of bioengineering. In this study, a biomimetic, osteoconductive tricomposite scaffold made of hydroxyapatite (HA) embedded in non-mulberry Antheraea assama (A. assama) silk fibroin fibers and its fibroin solution is explored for its osteogenic potential.
View Article and Find Full Text PDFAutologous graft replacement as a strategy to treat diseased peripheral small diameter (≤6 mm) blood vessel is often challenged by prior vein harvesting. To address this issue, we fabricated native-tissue mimicking multilayered small diameter vascular graft (SDVG) using mulberry (Bombyx mori) and Indian endemic non-mulberry (Antheraea assama and Philosamia ricini) silk. Patterned silk films were fabricated on microgrooved PDMS mold, casted by soft lithography.
View Article and Find Full Text PDFSilk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk.
View Article and Find Full Text PDF