Publications by authors named "Prem P Yadav"

Chlorophyll, the principal photoacceptor of green plants, plays a pivotal role in photosynthesis. In the recent past, chlorophyll has also been utilized as an efficient organo-photocatalyst in several organic syntheses. The inexpensive, ubiquitous nature of chlorophyll endorses it as an appealing green alternative to transition metal photocatalysts.

View Article and Find Full Text PDF

Photocatalytic syntheses of quinoline-2(1)-ones, isoquinoline-1(2)-ones and 1,2,4-trioxanes were achieved by selective photo-induced electron transfer (PET) and energy transfer (EnT), respectively, by chlorophyll under visible light irradiation. Quinoline-2(1)-ones, isoquinoline-1(2)-ones and 1,2,4-trioxanes are biologically potent scaffolds and their syntheses following mild reaction protocols are highly sought after. This work showcases the divergent photocatalytic roles of chlorophyll .

View Article and Find Full Text PDF

A series of new pyranocarbazole derivatives were synthesized via semi-synthetic modification of koenimbine (1a) and koenidine (1b) isolated from the leaves of Murraya koenigii. Among all, compound 3bg displayed significant anti-cancer activity against MDA-MB-231, DU145 and PC3 cell lines with the IC values of 3.8, 7.

View Article and Find Full Text PDF

In recent years, many alkaloids of plant origin have attracted great attention due to their diverse range of biological properties including anti-hyperglycemic, anti-oxidant, anti-inflammatory, anti-diabetic and anti-tumor activity. Herein, the pyranocarbazole alkaloids were isolated from leaves of Murraya koenigii and their anti-cancer potential was investigated in different cancer cell lines. Among all tested compounds, murrayazoline and O-methylmurrayamine A demonstrated potent anti-cancer activity against DLD-1 colon cancer cells with the IC values of 5.

View Article and Find Full Text PDF

An efficient one pot method for the synthesis of anti-α,β-epoxy ketones from 1-(2-methyl-4-phenylquinolin-3-yl)ethanone and ethanol has been developed by a modified Darzen reaction. The reaction occurs under oxidative conditions via a cascade sequence of bromination, aldol condensation followed by substitution. The reaction in the presence of NBS and a base however, in the absence of an oxidant, led to the formation of the corresponding 3-hydroxylated product via an unusual rearrangement.

View Article and Find Full Text PDF

A series of pyrazolo(dihydro)pyridines was synthesized and evaluated for antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all compounds, 6d and 6j exhibited better activity than miltefosine against intracellular amastigotes. Compound 6j (50 mg/kg/day) was further studied against Leishmania donovani/BALB/c mice via the intraperitoneal route for 5 days and displayed >91 and >93% clearance of splenic and liver parasitic burden, respectively.

View Article and Find Full Text PDF

Withanolides possess diverse biological and pharmacological activity but their immunomodulatory function is less realized. Hence, coagulin-L, a withanolide isolated from Withania coagulans Dunal has been studied for such an effect in human and murine cells, and mice model. Coagulin-L (1, 3, 10μM) exhibited immunomodulatory effect by suppressing TLR4 induced immune mediators such as cytokines (GMCSF, IFNα, IFNγ, IL-1α, IL-1Rα, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p40/p70), IL-13, IL-15, IL-17), chemokines (IL-8/CXCL8, MIG/CXCL9, IP-10/CXCL10, KC, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5, eotaxin/CCL11), growth factors (FGF-basic, VEGF), nitric oxide and intracellular superoxide.

View Article and Find Full Text PDF

In the past decade, metal-free approaches for C-C bond formation have attracted a great deal of attention due to their ease of use and low cost. This report represents a novel and metal-free synthesis of 3,3'-bisimidazopyridinylmethanes via intermolecular oxidative C(sp(2))-H bond functionalization of imidazo[1,2-a]pyridines with dimethyl sulfoxide as the carbon synthon (CH2) using H2O2 as a mild oxidant under air. A library of 3,3'-bis(2-arylimidazo[1,2-a]pyridin-3-yl)methanes has been achieved in good to excellent yields.

View Article and Find Full Text PDF

This study identified koenidine (4) as a metabolically stable antidiabetic compound, when evaluated in a rodent type 2 model (leptin receptor-deficient db/db mice), and showed a considerable reduction in the postprandial blood glucose profile with an improvement in insulin sensitivity. Biological studies were directed from the preliminary in vitro evaluation of the effects of isolated carbazole alkaloids (1-6) on glucose uptake and GLUT4 translocation in L6-GLUT4myc myotubes, followed by an investigation of their activity (2-5) in streptozotocin-induced diabetic rats. The effect of koenidine (4) on GLUT4 translocation was mediated by the AKT-dependent signaling pathway in L6-GLUT4myc myotubes.

View Article and Find Full Text PDF

A phenyliodine(III) diacetate (PIDA)-mediated, highly efficient and tandem approach for the synthesis of aryldiazenylisoxazolo(isothiazolo)arenes from simple 2-amino-N'-arylbenzohydrazides has been developed. The reaction proceeds via formation of (E)-(2-aminoaryl)(aryldiazenyl)methanone as the key intermediate, followed by intramolecular oxidative O-N/S-N bond formation in one pot at room temperature. The quiet different reactivity of the substrate is due to the formation of a diazo intermediate which encounters a nucleophilic attack by carbonyl oxygen on the electrophilic amine to produce isoxazole products, as compared to the previous reportsa,b,4 in which an N-acylnitrenium ion intermediate is intramolecularly trapped by an amine group.

View Article and Find Full Text PDF

A transition-metal-free C-3-arylation of quinolin-4-ones in the presence of base has been achieved by using arylhydrazines as aryl radical source and air as oxidant. The reaction proceeds smoothly at room temperature and does not require any prefunctionalization and N-protection of quinoline-4-ones. The utility of this methodology is further demonstrated in synthesis of quinoline-quinolone hybrid as well as 6-aryl-benzofuro[3,2-c]quinoline scaffold.

View Article and Find Full Text PDF

Background: Murraya koenigii (L.) Spreng. is an important medicinal plant used traditionally as an antiemetic, antidiarrhoeal agent and blood purifier and as a medicine for a variety of ailments.

View Article and Find Full Text PDF

Obesity is a result of adipocyte hypertrophy followed by hyperplasia. It is a risk factor for several metabolic disorders such as dyslipidemia, type-2 diabetes, hypertension, and cardiovascular diseases. Coagulanolides, particularly coagulin-L isolated from W.

View Article and Find Full Text PDF

Novel 3,3-spiroanellated 5-aryl, 6-arylvinyl-substituted 1,2,4-trioxanes 19-34 have been synthesized and appraised for their antimalarial activity against multidrug-resistant Plasmodium yoelii nigeriensis in Swiss mice by oral route at doses ranging from 96 mg/kg × 4 days to 24 mg/kg × 4 days. The most active compound of the series (compound 25) provided 100% protection at 24 mg/kg × 4 days, and other 1,2,4-trioxanes 22, 26, 27, and 30 also showed promising activity. In this model, β-arteether provided 100 and 20% protection at 48 mg/kg × 4 days and 24 mg/kg × 4 days, respectively, by oral route.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc.

View Article and Find Full Text PDF

The ethanolic extract and fractions of Wrightia tomentosa Roem. & Schult (Apocynaceae) leaves were tested in vivo for their antidyslipidemic activity in high fat diet (HFD) induced dyslipidemic hamsters. Activity guided isolation resulted in identification of antidyslipidemic compounds β-AA and β-AP.

View Article and Find Full Text PDF

The natural Cassane and norcassane diterpenes are biosynthetic rearrangement products of Pimarane precursor in the biosynthetic pathway of diterpenes. Their distribution is highly restricted to various genera of Fabaceae family (especially to Caesalpinia genus). A comprehensive account of the structural diversity (322 structures, 114 references) is given in this review along with biological activities of cassane and norcassane diterpenes up to September 2011.

View Article and Find Full Text PDF

Insulin-stimulated glucose uptake in skeletal muscle is decreased in type 2 diabetes due to impaired translocation of insulin-sensitive glucose transporter 4 (GLUT4) from intracellular pool to plasma membrane. Augmenting glucose uptake into this tissue may help in management of type 2 diabetes. Here, the effects of an identified antihyperglycemic molecule, karanjin, isolated from the fruits of Pongamia pinnata were investigated on glucose uptake and GLUT4 translocation in skeletal muscle cells.

View Article and Find Full Text PDF

The anticancer potential of Xylopia aethiopica fruit extract (XAFE), and the mechanism of cell death it elicits, was investigated in various cell lines. Treatment with XAFE led to a dose-dependent growth inhibition in most cell lines, with selective cytotoxicity towards cancer cells and particularly the human cervical cancer cell line C-33A. In this study, apoptosis was confirmed by nuclear fragmentation and sub-G(0)/G(1) phase accumulation.

View Article and Find Full Text PDF

Skeletal muscle is the major site of postprandial glucose disposal and augmenting glucose uptake into this tissue may attenuate insulin resistance that precedes type 2 diabetes mellitus. Here, we investigated the effect of pongamol, an identified lead molecule from the fruits of Pongamia pinnata, on glucose uptake and GLUT4 translocation in skeletal muscle cells. In L6-GLUT4myc myotubes treatment with pongamol significantly promoted both glucose transport and GLUT4 translocation to the cell surface in a concentration-dependent manner, without changing the total amount of GLUT4 protein and GLUT4 mRNA, effects that were also additive with insulin.

View Article and Find Full Text PDF

ent-Homoabyssomicins A (1) and B (2) are new complex polycyclic spirotetronate metabolites isolated from Streptomyces sp. isolate Ank 210. The structures of 1 and 2 were elucidated by detailed spectroscopic analyses of 1D and 2D NMR data.

View Article and Find Full Text PDF

In a screening of micro-organisms for new secondary metabolites, two unprecedented tricyclic highly functionalized ketal-lactone metabolites, named lucknolide A (1) and lucknolide B (2), have been isolated, and the compounds were characterized by extensive NMR and mass spectroscopic studies. Single-crystal X-ray diffraction experiments on 1 and 2 were performed, and the absolute configuration of 1 was determined.

View Article and Find Full Text PDF

Three cassane diterpene hemiketals, caesalpinolide-C, caesalpinolide-D, caesalpinolide-E and one cassane furanoditerpene were isolated from Caesalpinia bonduc. The molecular structures were elucidated using NMR spectroscopy in combination with IR, UV and mass spectral data and relative stereochemistries were determined through ROESY correlation. The isolated compounds were tested for their antiproliferative activity against MCF-7 (breast adenocarcinoma), DU145 (prostate carcinoma), C33A (Cervical carcinoma) and Vero (African green monkey kidney fibroblast) cells.

View Article and Find Full Text PDF

Aim Of The Study: To identify pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamia pinnata fruits.

Material And Methods: Streptozotocin-induced diabetic rats and hyperglycemic, hyperlipidemic and hyperinsulinemic db/db mice were used to investigate the antihyperglycemic activity of pongamol and karangin isolated from the fruits of Pongamia pinnata.

Results: In streptozotocin-induced diabetic rats, single dose treatment of pongamol and karanjin lowered the blood glucose level by 12.

View Article and Find Full Text PDF

Different stereoisomers of active molecules often cause different physiological responses and hence pose a challenge for their identification. This study involves perceptive fragmentation behavior of newly isolated cassane butenolides, caesalpinolide A [1] and caesalpinolide B [2] (epimeric at the hemiketal position) by tandem MS. The electrospray ionization-mass spectrometry (ESI-MS)/collision-induced dissociation (CID; ESI-MS(2) and ESI-IT-MS(n)) were investigated.

View Article and Find Full Text PDF