Publications by authors named "Prem Jareonsettasin"

Social determinants of health (SDHs) are significant and potentially modifiable drivers of neurologic diseases, including childhood epilepsy. Social determinants of health greatly influence the epidemiology, management, and outcomes associated with these conditions. Social determinants of health affect every aspect of a family's journey with epilepsy-from initial diagnosis to accessing effective treatments and ongoing care.

View Article and Find Full Text PDF

Background: The clinical presentation of COVID-19 suggests altered breathing control - tachypnoea, relative lack of dyspnoea, and often a discrepancy between severity of clinical and radiological findings. Few studies characterize and analyse the contribution of breathing drivers and their ventilatory and perceptual responses.

Aim: To establish the prevalence of inappropriate ventilatory and perceptual response in COVID-19, by characterizing the relationships between respiratory rate (RR), dyspnoea and arterial blood gas (ABG) in a cohort of COVID-19 patients at presentation to hospital, and their post-Covid respiratory sequelae at follow-up.

View Article and Find Full Text PDF

Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites.

View Article and Find Full Text PDF

Until recently the assessment of many movement disorders has relied on clinical rating scales that despite careful design are inherently subjective and non-linear. This makes accurate and truly observer-independent quantification difficult and limits the use of sensitive parametric statistical methods. At last, devices capable of measuring neurological problems quantitatively are becoming readily available.

View Article and Find Full Text PDF

Humans often experience dizziness and vertigo around strong static magnetic fields such as those present in an MRI scanner. Recent evidence supports the idea that this effect is the result of inner ear vestibular stimulation and that the mechanism is a magnetohydrodynamic force (Lorentz force) that is generated by the interactions between normal ionic currents in the inner ear endolymph and the strong static magnetic field of MRI machines. While in the MRI, the Lorentz force displaces the cupula of the lateral and anterior semicircular canals, as if the head was rotating with a constant acceleration.

View Article and Find Full Text PDF

A major focus in neurobiology is how the brain adapts its motor behavior to changes in its internal and external environments [1, 2]. Much is known about adaptively optimizing the amplitude and direction of eye and limb movements, for example, but little is known about another essential form of learning, "set-point" adaptation. Set-point adaptation balances tonic activity so that reciprocally acting, agonist and antagonist muscles have a stable platform from which to launch accurate movements.

View Article and Find Full Text PDF

The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures.

View Article and Find Full Text PDF

Background: The protein Nogo-A regulates axon growth in the developing and mature nervous system, and this is carried out by two distinct domains in the protein, Nogo-A-Δ20 and Nogo-66. The differences in the signalling pathways engaged in axon growth cones by these domains are not well characterized, and have been investigated in this study.

Methodology/principal Findings: We analyzed growth cone collapse induced by the Nogo-A domains Nogo-A-Δ20 and Nogo-66 using explanted chick dorsal root ganglion neurons growing on laminin/poly-lysine substratum.

View Article and Find Full Text PDF