We present an innovative approach to achieve all-optical modulation within an ITO-based vertically coupled ring resonator. This method leverages the material's enhanced nonlinear response in the near-infrared wavelengths, particularly within the epsilon-near-zero (ENZ) state. To enhance the interaction between light and the material while minimizing scattering losses, our approach employs an ITO-based vertically connected ring resonator.
View Article and Find Full Text PDFMiniaturized, low-cost wavelength detectors are gaining enormous interest as we step into the new age of photonics. Incompatibility with integrated circuits or complex fabrication requirement in most of the conventionally used filters necessitates the development of a simple, on-chip platform for easy-to-use wavelength detection system. Also, intensity fluctuations hinder precise, noise free detection of spectral information.
View Article and Find Full Text PDFPalladium(II) ion-imprinted polymer (IIP) materials were synthesized by thermally polymerizing the ternary complexes of palladium(II) with amino (AQ) or hydroxy (HQ) or mercapto (MQ) derivatives of quinoline and 4-vinyl-pyridine. The functional and crosslinking monomers used during polymerization were 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA). 2,2'-Azobisisobutyronitrile (AIBN) and 2-methoxy ethanol were used as the initiator and porogen, respectively.
View Article and Find Full Text PDF