The catalytic function of lytic polysaccharide monooxygenases (LPMOs) to cleave and decrystallize recalcitrant polysaccharides put these enzymes in the spotlight of fundamental and applied research. Here we demonstrate that the demand of LPMO for an electron donor and an oxygen species as cosubstrate can be fulfilled by a single auxiliary enzyme: an engineered fungal cellobiose dehydrogenase (CDH) with increased oxidase activity. The engineered CDH was about 30 times more efficient in driving the LPMO reaction due to its 27 time increased production of H O acting as a cosubstrate for LPMO.
View Article and Find Full Text PDFBackground: Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by lignocellulolytic fungi. cdh gene expression is high in cellulose containing media, but relatively low CDH concentrations are found in the supernatant of fungal cultures due to strong binding to cellulose. Therefore, heterologous expression of CDH in Pichia pastoris was employed in the last 15 years, but the obtained enzymes were over glycosylated and had a reduced specific activity.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site.
View Article and Find Full Text PDFNinety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by an electron donor. Understanding the source of electrons is fundamental to fungal physiology and will also help with the exploitation of LPMOs for biomass processing.
View Article and Find Full Text PDFThe recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2011
Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads.
View Article and Find Full Text PDF