It has been proposed that the nervous system has the capacity to generate a wide variety of movements because it reuses some invariant code. Previous work has identified that dynamics of neural population activity are similar during different movements, where dynamics refer to how the instantaneous spatial pattern of population activity changes in time. Here, we test whether invariant dynamics of neural populations are actually used to issue the commands that direct movement.
View Article and Find Full Text PDFBackground: Current approaches to characterizing deficits in upper limb movements after stroke typically focus either on changes in a functional measure, for example, how well a patient can complete a task, or changes in impairment, for example, isolated measurements of joint range of motion. However, there can be notable dissociations between static measures of impairment versus those of function.
Objective: We develop a method to measure upper limb joint angles during performance of a functional task and use measurements to characterize joint impairment in the context of a functional task.
Stroke is a leading cause of disability. While neurotechnology has shown promise for improving upper limb recovery after stroke, efficacy in clinical trials has been variable. Our central thesis is that to improve clinical translation, we need to develop a common neurophysiological framework for understanding how neurotechnology alters network activity.
View Article and Find Full Text PDFAnimals can capitalize on invariance in the environment by learning and automating highly consistent actions; however, they must also remain flexible and adapt to environmental changes. It remains unclear how primary motor cortex (M1) can drive precise movements, yet also support behavioral exploration when faced with consistent errors. Using a reach-to-grasp task in rats, along with simultaneous electrophysiological monitoring in M1 and dorsolateral striatum (DLS), we find that behavioral exploration to overcome consistent task errors is closely associated with tandem increases in M1 and DLS neural variability; subsequently, consistent ensemble patterning returns with convergence to a new successful strategy.
View Article and Find Full Text PDFElectrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping.
View Article and Find Full Text PDFMotor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Many closed-loop, continuous-control brain-machine interface (BMI) architectures rely on decoding via a linear readout of noisy population neural activity. However, recent work has found that decomposing neural population activity into correlated and uncorrelated variability reveals that improvements in cursor control coincide with the emergence of correlated neural variability. In order to address how correlated and uncorrelated neural variability arises and contributes to BMI cursor control, we simulate a neural population receiving combinations of shared inputs affecting all cells and private inputs affecting only individual cells.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13-30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas.
View Article and Find Full Text PDFSkin Pharmacol Physiol
March 2017
The structure of the stratum corneum (SC) and the corresponding skin barrier develops from before birth up to about 4 years of age. Large subject-to-subject variability within an age group requires a large population to observe trends in skin barrier properties over time. Barrier function, quantified by transepidermal water loss (TEWL) and SC thickness, was measured on the upper inner arm and dorsal forearm in subjects aged 3 months to 4 years (n = 171) and a subset of mothers (n = 44).
View Article and Find Full Text PDFThe cumulative irritation test (CIT) is an accepted method used to evaluate the skin irritation potential and safety of individual ingredients and formulas of leave-on skin care and cosmetic compounds. Here, we report the results of CITs collected by JOHNSON & JOHNSON Consumer Companies, Inc. (Skillman, NJ), part of an extensive tiered program to evaluate product safety.
View Article and Find Full Text PDFLocal field potential (LFP) activity in motor cortical and basal ganglia regions exhibits prominent beta (15-40Hz) oscillations during reaching and grasping, muscular contraction, and attention tasks. While in vitro and computational work has revealed specific mechanisms that may give rise to the frequency and duration of this oscillation, there is still controversy about what behavioral processes ultimately drive it. Here, simultaneous behavioral and large-scale neural recording experiments from non-human primate and human subjects are reviewed in the context of specific hypotheses about how beta band activity is generated.
View Article and Find Full Text PDF