A robust prognostic and biological classification for newly diagnosed follicular lymphoma (FL) using molecular profiling remains challenging. FL tumors from patients treated in the RELEVANCE trial with rituximab-chemotherapy (R-chemo) or rituximab-lenalidomide (R2) were analyzed using RNA sequencing, DNA sequencing, immunohistochemistry (IHC), and/or fluorescence in situ hybridization. Unsupervised gene clustering identified 2 gene expression signatures (GSs) enriched in normal memory (MEM) B cells and germinal center (GC) B-cell signals, respectively.
View Article and Find Full Text PDFChemotherapy plus rituximab has been the mainstay of treatment for follicular lymphoma (FL) for two decades but is associated with immunosuppression and relapse. In phase 2 studies, lenalidomide combined with rituximab (R ) has shown clinical synergy in front-line and relapsed/refractory FL. Here, we show that lenalidomide reactivated dysfunctional T and Natural Killer (NK) cells ex vivo from FL patients by enhancing proliferative capacity and T-helper cell type 1 (Th1) cytokine release.
View Article and Find Full Text PDFSacituzumab govitecan (IMMU-132) is an antibody-drug conjugate (ADC) made from a humanized anti-Trop-2 monoclonal antibody (hRS7) conjugated with the active metabolite of irinotecan, SN-38. In addition to its further characterization, as the clinical utility of IMMU-132 expands to an ever-widening range of Trop-2-expressing solid tumor types, its efficacy in new disease models needs to be explored in a nonclinical setting. Unlike most ADCs that use ultratoxic drugs and stable linkers, IMMU-132 uses a moderately toxic drug with a moderately stable carbonate bond between SN-38 and the linker.
View Article and Find Full Text PDFThe antibody-drug conjugate (ADC), IMMU-130, of the moderately cytotoxic topoisomerase I inhibitor, SN-38, and the CEACAM5-targeted humanized antibody (mAb), labetuzumab, was evaluated in model systems of human colon carcinoma and in phase I clinical trials of heavily pretreated patients with metastatic colorectal cancer. The conjugate, designed with a near-homogeneous drug substitution of 7-8 SN-38/mAb and with a linker that released 50% of the drug in ∼20 h, showed significant antitumor effects compared to a nontargeted ADC in human tumor xenografts, which could be augmented in combination with bevacizumab. The advantage of fractionated dosing was demonstrated, with potential implications for the clinical dosing schedule.
View Article and Find Full Text PDFBackground: Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway.
View Article and Find Full Text PDFA major mechanism of monoclonal antibodies that selectively target the insulin-like growth factor type 1 receptor (IGF-1R) to inhibit tumor growth is by downregulating the receptor, regardless whether they are capable (antagonistic) or incapable (agonistic) of blocking the binding of cognate ligands. We have developed and characterized a novel agonistic anti-IGF-1R humanized antibody, hR1, and used the Dock-and-Lock (DNL) method to construct Hex-hR1, the first multivalent antibody comprising 6 functional Fabs of hR1, with the aim of enhancing potency of hR1. Based on cross-blocking experiments, hR1 recognizes a region of cysteine-rich domain on the α-subunit, different from the epitopes mapped for existing anti-IGF-1R antibodies, yet hR1 is similar to other anti-IGF-1R antibodies in downregulating IGF-1R and inhibiting proliferation, colony formation, or invasion of selected cancer cell lines in vitro, as well as suppressing growth of the RH-30 rhabdomyosarcoma xenograft in nude mice when combined with the mTOR inhibitor, rapamycin.
View Article and Find Full Text PDFPurpose: Evaluate the efficacy of an SN-38-anti-Trop-2 antibody-drug conjugate (ADC) against several human solid tumor types, and to assess its tolerability in mice and monkeys, the latter with tissue cross-reactivity to hRS7 similar to humans.
Experimental Design: Two SN-38 derivatives, CL2-SN-38 and CL2A-SN-38, were conjugated to the anti-Trop-2-humanized antibody, hRS7. The immunoconjugates were characterized in vitro for stability, binding, and cytotoxicity.