Publications by authors named "Preeti Saini"

: Analyzing the cardiac autonomic function in COVID-19 patients can provide insights into the impact of the virus on the heart's regulatory mechanisms and its recovery. The autonomic nervous system plays a crucial role in regulating the heart's functions, such as heart rate, blood pressure, and cardiac output. This study aimed to investigate the impact of COVID-19 on heart rate variability (HRV) during a 6-min walk test (6MWT).

View Article and Find Full Text PDF

Background And Aims: Intense bleeding during general anaesthesia (GA) is the major limitation during functional endoscopic sinus surgery (FESS). This study was aimed to compare the efficacy of dexmedetomidine and magnesium sulphate (MgSO) for controlled hypotension in FESS.

Methods: Sixty eight patients undergoing FESS were randomised to receive either dexmedetomidine 1 μg/kg over 10 min followed by infusion at 0.

View Article and Find Full Text PDF

Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues.

View Article and Find Full Text PDF

Translation elongation factors facilitate protein synthesis by the ribosome. Previous studies identified two universally conserved translation elongation factors, EF-Tu in bacteria (known as eEF1A in eukaryotes) and EF-G (eEF2), which deliver aminoacyl-tRNAs to the ribosome and promote ribosomal translocation, respectively. The factor eIF5A (encoded by HYP2 and ANB1 in Saccharomyces cerevisiae), the sole protein in eukaryotes and archaea to contain the unusual amino acid hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine), was originally identified based on its ability to stimulate the yield (endpoint) of methionyl-puromycin synthesis-a model assay for first peptide bond synthesis thought to report on certain aspects of translation initiation.

View Article and Find Full Text PDF

Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles.

View Article and Find Full Text PDF

The molecular basis of the broad substrate recognition and the transport of substrates by Cdr1p, a major drug efflux protein of Candida albicans, is not well understood. To investigate the role of transmembrane domains and nucleotide-binding domains (NBDs) of Cdr1p in drug transport, two sets of protein chimeras were constructed: one set between homologous regions of Cdr1p and the non-drug transporter Cdr3p, and another set consisting of Cdr1p variants comprising either two N- or two C-terminal NBDs of Cdr1p. The replacement of either the N- or the C-terminal half of Cdr1p by the homologous segments of Cdr3p resulted in non-functional recombinant strains expressing chimeric proteins.

View Article and Find Full Text PDF

In the present study we describe the isolation and functional analysis of a sphingolipid biosynthetic gene, IPT1, of Candida albicans. The functional consequence of the disruption of both alleles of IPT1 was confirmed by mass analysis of its sphingolipid composition. The disruption of both alleles or a single allele of IPT1 did not lead to any change in growth phenotype or total sphingolipid, ergosterol, or phospholipid content of the mutant cells.

View Article and Find Full Text PDF

Objectives: To investigate the role of transmembrane segment 11 (TMS11) of Candida albicans drug resistance protein (Cdr1p) in drug extrusion.

Methods: We replaced each of the 21 putative residues of TMS11 with alanine by site-directed mutagenesis. The Saccharomyces cerevisiae AD1-8u(-) strain was used to overexpress the green fluorescent protein tagged wild-type and mutant variants of TMS11 of Cdr1p.

View Article and Find Full Text PDF

Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans.

View Article and Find Full Text PDF

In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters.

View Article and Find Full Text PDF

In this study, we examined the importance of membrane ergosterol and sphingolipids in the drug susceptibilities of Candida albicans. We used three independent methods to test the drug susceptibilities of erg mutant cells, which were defective in ergosterol biosynthesis. While spot and filter disk assays revealed that erg2 and erg16 mutant cells of C.

View Article and Find Full Text PDF

In view of the importance of Candida drug resistance protein (Cdr1p) in azole resistance, we have characterized it by overexpressing it as a green fluorescent protein (GFP)-tagged fusion protein (Cdr1p-GFP). The overexpressed Cdr1p-GFP in Saccharomyces cerevisiae is shown to be specifically labeled with the photoaffinity analogs iodoarylazidoprazosin (IAAP) and azidopine, which have been used to characterize the drug-binding sites on mammalian drug-transporting P-glycoproteins. While nystatin could compete for the binding of IAAP, miconazole specifically competed for azidopine binding, suggesting that IAAP and azidopine bind to separate sites on Cdr1p.

View Article and Find Full Text PDF

The Candida drug resistance protein Cdr1p (approximately 170 kDa) is a member of ATP binding cassette (ABC) superfamily of drug transporters, characterized by the presence of 2 nucleotide binding domains (NBD) and 12 transmembrane segments (TMS). NBDs of these transporters are the hub of ATP hydrolysis activity, and their sequence contains a conserved Walker A motif (GxxGxGKS/T). Mutations of the lysine residue within this motif abrogate the ability of NBDs to hydrolyze ATP.

View Article and Find Full Text PDF