Movement of a three-dimensional solid at an air-water interface is strongly influenced by the extrinsic interactions between the solid and the water. The finite thickness and volume of a moving solid causes capillary interactions and water-induced drag. In this Letter, we report the fabrication and dynamical imaging of freely floating MoS solids on water, which minimizes such extrinsic effects.
View Article and Find Full Text PDFPhotolithography and electron-beam lithography are the most common methods for making nanoscale devices from semiconductors. While these methods are robust for bulk materials, they disturb the electrical properties of two-dimensional (2D) materials, which are highly sensitive to chemicals used during lithography processes. Here, we report a resist-free lithography method, based on direct laser patterning and resist-free electrode transfer, which avoids unintentional modification to the 2D materials throughout the process.
View Article and Find Full Text PDFThe densification of integrated circuits requires thermal management strategies and high thermal conductivity materials. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials.
View Article and Find Full Text PDFTuning electrical conductivity of semiconducting materials through substitutional doping is crucial for fabricating functional devices. This, however, has not been fully realized in two-dimensional (2D) materials due to the difficulty of homogeneously controlling the dopant concentrations and the lack of systematic study of the net impact of substitutional dopants separate from that of the unintentional doping from the device fabrication processes. Here, we grow wafer-scale, continuous MoS monolayers with tunable concentrations of Nb and Re and fabricate devices using a polymer-free approach to study the direct electrical impact of substitutional dopants in MoS monolayers.
View Article and Find Full Text PDFEpitaxy forms the basis of modern electronics and optoelectronics. We report coherent atomically thin superlattices in which different transition metal dichalcogenide monolayers-despite large lattice mismatches-are repeated and laterally integrated without dislocations within the monolayer plane. Grown by an omnidirectional epitaxy, these superlattices display fully matched lattice constants across heterointerfaces while maintaining an isotropic lattice structure and triangular symmetry.
View Article and Find Full Text PDF