Nanoparticles (NPs) embedded with bioactive ligands such as carbohydrates, peptides, and nucleic acid have emerged as a potential tool to target biological processes. Traditional in vitro assays performed under statistic conditions may result in non-specific outcome sometimes, mainly because of the sedimentation and self-assembly nature of NPs. Inverted cell-culture assay allows for flexible and accurate detection of the receptor-mediated uptake and cytotoxicity of NPs.
View Article and Find Full Text PDFThe aberrant expression of endocytic epidermal growth factor receptors (EGFRs) in cancer cells has emerged as a key target for therapeutic intervention. Here, we describe for the first time a state-of-the-art design for a heparan sulfate (HS) oligosaccharide-based nanovehicle to target EGFR-overexpressed cancer cells in cellular heterogeneity. An ELISA plate IC inhibition assay and surface plasma resonance (SPR) binding assay of structurally well-defined HS oligosaccharides showed that 6--sulfation (6--S) and 6--phosphorylation (6--P) of HS tetrasaccharides significantly enhanced EGFR cognate growth factor binding.
View Article and Find Full Text PDFSialic acids (Sias) are fascinating nine-carbon monosaccharides that are primarily found on the terminus of the oligosaccharide chains of glycoproteins and glycolipids on cell surfaces. These Sias undergo a variety of structural modifications at their hydroxy and amine positions, thereby resulting in structural diversity and, hence, coordinating a variety of biological processes. However, deciphering the structural functions of such interactions is highly challenging, because the monovalent binding of Sias is extremely weak.
View Article and Find Full Text PDFGlyconanotechnology offers a broad range of applications across basic and translation research. Despite the tremendous progress in glyco-nanomaterials, there is still a huge gap between the basic research and therapeutic applications of these molecules. It has been reported that complexity and the synthetic challenges in glycans synthesis, the cost of the high order in vivo models and large amount of sample consumptions limited the effort to translate the glyco-nanomaterials into clinical applications.
View Article and Find Full Text PDFMultivalent glycodendrimers make promising tools to tackle the basic and translational research in the field of carbohydrate-mediated interactions. Despite advances in glycodendrimers and glycopolymers, the multivalent probes available to date are still far from being ideal biological mimics. This work demonstrates the inherent chirality of glycodendrimers to be one of the promising factors to generate different spatial carbohydrate micro-environments to modulate specific carbohydrate-protein interactions.
View Article and Find Full Text PDFAdvances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines.
View Article and Find Full Text PDFAchieving selective and sensitive carbohydrate-protein interactions (CPIs) using nanotechnology is an intriguing area of research. Here we demonstrate that the different shapes of gold nanoparticles (AuNPs) functionalized with monosaccharides tune the bacterial aggregations. The mechanism of aggregation revealed that the large number of surface interactions of rod shaped mannose-AuNPs with E.
View Article and Find Full Text PDFWe have developed peptidomimetic sialic acid (Sia) biosensors using boronic acid and arginine groups on the peptide backbone. The designed peptides were conjugated to fluorescent streptavidin via biotin enabling the optical labeling of cells. This approach provides unique opportunities to detect Sia composition on the cell surfaces and filopodia.
View Article and Find Full Text PDFBenzoyl phenyl urea, a class of insect growth regulator's acts by inhibiting chitin synthesis. Carvacrol, a naturally occurring monoterpenoid is an effective antifungal agent. We have structurally modified carvacrol (2-methyl-5-[1-methylethyl] phenol) by introducing benzoylphenyl urea linkage.
View Article and Find Full Text PDFIncreased risk of fungal diseases in immunocompromised patients, emerging fungal pathogens, limited repertoire of antifungal drugs and resistance development against the drugs demands for development of new and effective antifungal agents. With greater knowledge of fungal metabolism efforts are being made to inhibit specific enzymes involved in different biochemical pathways for the development of antifungal drugs. Chitin synthase is one such promising target as it is absent in plants and mammals.
View Article and Find Full Text PDFClick reaction approach toward the synthesis of two sets of novel 1,2,3-triazolyl linked uridine derivatives 19a-19g and 21a-21g was achieved by Cu(I)-catalyzed 1,3-dipolar cycloaddition of 5'-azido-5'-deoxy-2',3'-O-(1-methylethylidene)uridine (17) with propargylated ether of phenols 18a-18g and propargylated esters 20a-20g. Structure of one of the representative compound 19d was unambiguously confirmed by X-ray crystallography. Chitin synthase inhibition study of all these compounds 19a-19g and 21a-21g was carried out to develop antifungal strategy.
View Article and Find Full Text PDFPropargylation of 3-substituted-1,2,4-triazole-5-thiols, which predominantly exist as their thione tautomers, was carried out with the view to synthesize different heterocycles and study their biological activity. Three different products namely, a mono S-propargyl and two S,N-dipropargyl regioisomers, arising from N1/N2 substitution, were isolated and characterized. Unambiguous structural elucidation of the regioisomers of S,N-dipropargyl derivatives was achieved by means of (13)C-(1)H HMBC technique.
View Article and Find Full Text PDF