Reuniting denuded nerve ends after a long segmental peripheral nerve defect is challenging due to delayed axonal regeneration and incomplete, nonspecific reinnervation, as conventional hollow nerve guides fail to ensure proper fascicular complementation and obstruct axonal guidance across the defects. This study focuses on fabricating multifilament conduits using a plant-derived anionic polysaccharide, pectin, where the abundant availability of carboxylate (COO-) functional groups in pectin facilitates instantaneous sol-gel transition upon interaction with divalent cations. Despite their advantages, pectin hydrogels encounter structural instability under physiological conditions.
View Article and Find Full Text PDFDespite the advances in tissue engineering approaches, reconstruction of long segmental peripheral nerve defects remains unsatisfactory. Although autologous grafts with proper fascicular complementation have shown meaningful functional recovery according to the Medical Research Council Classification (MRCC), the lack of donor nerve for such larger defect sizes (>30 mm) has been a serious clinical issue. Further clinical use of hollow nerve conduits is limited to bridging smaller segmental defects of denuded nerve ends (<30 mm).
View Article and Find Full Text PDFJ Tissue Eng Regen Med
November 2021
Reconstruction of peripheral nervous tissue remains challenging in critical-sized defects due to the lack of Büngner bands from the proximal to the distal nerve ends. Conventional nerve guides fail to bridge the large-sized defect owing to the formation of a thin fibrin cable. Hence, in the present study, an attempt was made to reverse engineer the intricate epi-, peri- and endo-neurial tissues using Fused Deposition Modeling based 3D printing.
View Article and Find Full Text PDF