Hydrogen bonding between amino acids and nucleobases is important for RNA-protein recognition. As a first step toward understanding the physicochemical features of these contacts, the present work employs density functional theory calculations to critically analyze the intrinsic structures and strength of all theoretically possible model hydrogen-bonded complexes involving RNA nucleobase edges and polar amino acid side chains. Our geometry optimizations uncover a number of unique complexes that involve variable hydrogen-bonding characteristics, including conventional donor-acceptor interactions, bifurcated interactions and single hydrogen-bonded contacts.
View Article and Find Full Text PDFNoncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds.
View Article and Find Full Text PDFIn the present work, 67 crystal structures of the aptamer domains of RNA riboswitches are chosen for analysis of the structure and strength of hydrogen bonding (pairing) interactions between nucleobases constituting the aptamer binding pockets and the bound ligands. A total of 80 unique base:ligand hydrogen-bonded pairs containing at least two hydrogen bonds were identified through visual inspection. Classification of these contacts in terms of the interacting edge of the aptamer nucleobase revealed that interactions involving the Watson-Crick edge are the most common, followed by the sugar edge of purines and the Hoogsteen edge of uracil.
View Article and Find Full Text PDFBase pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications.
View Article and Find Full Text PDF