The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF or not within a year of the examination. Our multicenter retrospective study included patients who underwent CXR without an HF diagnosis.
View Article and Find Full Text PDFThe chest radiograph (CXR) is the most frequently performed radiological examination worldwide. The increasing volume of CXRs performed in hospitals causes reporting backlogs and increased waiting times for patients, potentially compromising timely clinical intervention and patient safety. Implementing computer-aided detection (CAD) artificial intelligence (AI) algorithms capable of accurate and rapid CXR reporting could help address such limitations.
View Article and Find Full Text PDFIn medical practice, chest X-rays are the most ubiquitous diagnostic imaging tests. However, the current workload in extensive health care facilities and lack of well-trained radiologists is a significant challenge in the patient care pathway. Therefore, an accurate, reliable, and fast computer-aided diagnosis (CAD) system capable of detecting abnormalities in chest X-rays is crucial in improving the radiological workflow.
View Article and Find Full Text PDF: We assessed whether a CXR AI algorithm was able to detect missed or mislabeled chest radiograph (CXR) findings in radiology reports. : We queried a multi-institutional radiology reports search database of 13 million reports to identify all CXR reports with addendums from 1999-2021. Of the 3469 CXR reports with an addendum, a thoracic radiologist excluded reports where addenda were created for typographic errors, wrong report template, missing sections, or uninterpreted signoffs.
View Article and Find Full Text PDFTo compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs (temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP).
View Article and Find Full Text PDFBackground: Deep learning (DL) based solutions have been proposed for interpretation of several imaging modalities including radiography, CT, and MR. For chest radiographs, DL algorithms have found success in the evaluation of abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibrosis, pneumoconiosis, and location of peripherally inserted central catheters. Chest radiography represents the most commonly performed radiological test for a multitude of non-emergent and emergent clinical indications.
View Article and Find Full Text PDF