Publications by authors named "Predrag Milojkovic"

Macroscopic imagers are subject to constraints imposed by the wave nature of light and the geometry of image formation. The former limits the resolving power while the latter results in a loss of absolute size and shape information. The suite of methods outlined in this work enables macroscopic imagers the unique ability to capture unresolved spatial detail while recovering topographic information.

View Article and Find Full Text PDF

We show that a gradient-index element designed from a blend of three materials allows a designer to specify independently the element's refractive index and its change in refractive index with respect to wavelength. We show further the effectiveness of this approach by comparing modeled chromatic performance of deflectors consisting of a single material, a binary blend of materials, and a ternary blend.

View Article and Find Full Text PDF

From the expression for optical power of a radial first-order graded-index (GRIN) lens with curved surfaces, we derive an expression for chromatic aberration. Our expressions for optical power and chromatic aberration are valid under the paraxial approximation. By applying a series of further simplifying assumptions, namely a thin lens and thin GRIN, we derive a set of equations with which one can design an achromatic GRIN lens.

View Article and Find Full Text PDF

Multiscale optical design is an approach that has been successfully utilized for over 100 years by optical designers and engineers to overcome challenges and achieve desired optical system performance. The benefits of the design paradigm include improving light collection, creating specific symmetries that can be exploited, collecting additional information about the object space, partitioning the optical field to enable piecewise correction of aberrations, and alleviating packing constraints. The purpose of this paper is to review the historical emergence of the use of multiscale optical design and present key examples of developments that have expanded its capabilities over the years.

View Article and Find Full Text PDF

We examine the space-bandwidth product of wide field-of-view imaging systems as the systems scale in size. Our analysis is based on one conducted to examine the behavior of a plano-convex lens imaging onto a flat focal geometry. We extend this to consider systems with monocentric lenses and curved focal geometries.

View Article and Find Full Text PDF

The FAST-Net (Free-space Accelerator for Switching Terabit Networks) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density.

View Article and Find Full Text PDF

Experimental validation of a distortion removal technique for multi-chip free-space optical shuffle interconnections is presented. The free-space fabric links dense two-dimensional arrays of vertical cavity surface emitting laser(s) (VCSEL)(s) and detectors and must achieve full field registration on the order of 10 microns across the entire array. The new hybrid micro-macro optical concept realizes the required high-registration accuracy by simultaneously eliminating distortion in each of the interleaved off-axis imaging systems that comprise the complete fabric.

View Article and Find Full Text PDF

Eikonal analyses are applied to a hybrid micro/macro-optical shuffle interconnection approach that minimizes distortion in a multichip smart-pixel shuffle interconnection system. The optical system uses off-axis imaging elements to link clusters of dense arrays of vertical-cavity surface-emitting laser (VCSEL) sources to matching clusters within arrays of detectors. A critical requirement for such a system is that the images of the two-dimensional arrays of the VCSELs must be registered on their associated detector arrays with a precision of the order of 10 microm across the entire multichip array.

View Article and Find Full Text PDF

The ACTIVE-EYES (adaptive control for thermal imagers via electro-optic elements to yield an enhanced sensor) architecture, an adaptive image-segmentation and processing architecture, based on digital micromirror (DMD) array technology, is described. The concept provides efficient front-end processing of multispectral image data by adaptively segmenting and routing portions of the scene data concurrently to an imager and a spectrometer. The goal is to provide a large reduction in the amount of data required to be sensed in a multispectral imager by means of preprocessing the data to extract the most useful spatial and spectral information during detection.

View Article and Find Full Text PDF