Publications by authors named "Pre M"

Serum antibodies to the autoantigen transglutaminase 2 (TG2) are increasingly harnessed to diagnose coeliac disease. Diagnostic guidelines for children give recommendation for a no-biopsy-based diagnosis through detection of high amounts of IgA anti-TG2 antibodies in serum with confirmation of positivity in a separate blood sample by characteristic autoantibody-staining of tissue. While measurement of IgA anti-TG2 also is important in the diagnostic workup of adults, the adult guidelines still mandate examination of gut biopsies.

View Article and Find Full Text PDF

The adaptive immune response of celiac disease (CeD) involves presentation of gluten peptides to CD4 T cells by transglutaminase 2 (TG2) specific B cells. This B-cell/T-cell crosstalk is facilitated by involvement of TG2:gluten peptide complexes that act principally in the form of enzyme-substrate intermediates. Here, we have addressed how gluten peptide affinity and complex stability in the presence of secondary substrates affect the uptake of TG2:gluten peptide complexes by TG2-specific B cells and the activation of gluten-specific T cells.

View Article and Find Full Text PDF

Background: Celiac disease is an autoimmune enteropathy driven by dietary intake of gluten proteins. Typical histopathologic features are villous flattening, crypt hyperplasia and infiltration of inflammatory cells in the intestinal epithelium and lamina propria. The disease is hallmarked by the gluten-dependent production of autoantibodies targeting the enzyme transglutaminase 2 (TG2).

View Article and Find Full Text PDF

A hallmark of celiac disease is the gluten-dependent production of antibodies specific for deamidated gluten peptides (DGP) and the enzyme transglutaminase 2 (TG2). Both types of antibodies are believed to result from B cells receiving help from gluten-specific CD4+ T cells and differentiating into antibody-producing plasma cells. We have here studied the collaboration between DGP- and TG2-specific B cells with gluten-specific CD4+ T cells using transgenic mice expressing celiac patient-derived T-cell and B-cell receptors, as well as between B-cell transfectants and patient-derived gluten-specific T-cell clones.

View Article and Find Full Text PDF

The Caribbean ranks seventh among the world regions most affected by cervical cancer. HPV-prevalence and genotype distributions also differ from regions. Knowledge of HPV genotype profiles is important for patients care and HPV vaccination implementation.

View Article and Find Full Text PDF

Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)-like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD).

View Article and Find Full Text PDF

The human MHC class II molecule HLA-DQ2.5 is implicated in multiple autoimmune disorders, including celiac disease, type 1 diabetes, and systemic lupus erythematosus. The pathogenic contribution of HLA-DQ2.

View Article and Find Full Text PDF

We created a TCR transgenic mouse with CD4 T cells recognizing the immunodominant DQ2.5-glia-ω2 gluten epitope. We show that these cells respond to deamidated gluten feed in vivo and compare them to previously published α2- and γ1-specific mice.

View Article and Find Full Text PDF

Autoantibodies to transglutaminase 2 (TG2) are hallmarks of celiac disease. To address B cell tolerance and autoantibody formation to TG2, we generated immunoglobulin knock-in (Ig KI) mice that express a prototypical celiac patient-derived anti-TG2 B cell receptor equally reactive to human and mouse TG2. We studied B cell development in the presence/absence of autoantigen by crossing the Ig KI mice to Tgm2-/- mice.

View Article and Find Full Text PDF

The role of B cells and posttranslational modifications in pathogenesis of organ-specific immune diseases is increasingly envisioned but remains poorly understood, particularly in human disorders. In celiac disease, transglutaminase 2-modified (TG2-modified; deamidated) gluten peptides drive disease-specific T cell and B cell responses, and antibodies to deamidated gluten peptides are excellent diagnostic markers. Here, we substantiate by high-throughput sequencing of IGHV genes that antibodies to a disease-specific, deamidated, and immunodominant B cell epitope of gluten (PLQPEQPFP) have biased and stereotyped usage of IGHV3-23 and IGHV3-15 gene segments with modest somatic mutations.

View Article and Find Full Text PDF

Selection of biased T cell receptor (TCR) repertoires across individuals is seen in both infectious diseases and autoimmunity, but the underlying molecular basis leading to these shared repertoires remains unclear. Celiac disease (CD) occurs primarily in HLA-DQ2.5+ individuals and is characterized by a CD4+ T cell response against gluten epitopes dominated by DQ2.

View Article and Find Full Text PDF

The mucosa-draining lymphoid tissue favors differentiation of inducible Foxp3 regulatory T cells. Adoptive transfer of T-cell receptor (TCR) transgenic (Tg) T cells is a powerful tool to study antigen-specific regulatory T-cell differentiation in lymphoid tissues in vivo. The kinetics and nature of the T-cell response largely depend on the route of antigen administration and degree of clonal competition.

View Article and Find Full Text PDF

Phage display screening readily allows for the identification of a multitude of antibody specificities, but to identify optimal lead candidates remains a challenge. Here, we direct the antibody-capsid fusion away from the signal sequence-dependent secretory SEC pathway in E. coli by utilizing the intrinsic signal sequence-independent property of pIX to obtain virion integration.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a Ca-dependent cross-linking enzyme involved in the pathogenesis of CD. We have previously characterized a panel of anti-TG2 mAbs generated from gut plasma cells of celiac patients and identified four epitopes (epitopes 1-4) located in the N-terminal part of TG2. Binding of the mAbs induced allosteric changes in TG2.

View Article and Find Full Text PDF

Celiac disease is caused by inflammatory T-cell responses against the insoluble dietary protein gliadin. We have shown that, in humanized mice, oral tolerance to deamidated chymotrypsin-digested gliadin (CT-TG2-gliadin) is driven by tolerogenic interferon (IFN)-γ- and interleukin (IL)-10-secreting type 1 regulatory T-like cells (Tr1-like cells) generated in the spleen but not in the mesenteric lymph nodes. We aimed to uncover the mechanisms underlying gliadin-specific Tr1-like-cell differentiation and hypothesized that proteolytic gliadin degradation by splenic macrophages is a decisive step in this process.

View Article and Find Full Text PDF
Article Synopsis
  • Jasmonic acid (JA) and its derivatives, known as jasmonates, play a crucial role in plant development and stress responses to both abiotic and biotic factors.
  • Researchers have used genetic and chemical methods to study the JA pathway, but a precise method for controlling JA production within plants has been lacking.
  • In cotton plants infected by bacteria, a transcription factor named GhERF-IIb3 was identified, which can positively regulate JA synthesis, leading to increased JA levels and a stronger defense against bacterial attacks.
View Article and Find Full Text PDF

Tolerance to harmless exogenous antigens is the default immune response in the gastrointestinal tract. Although extensive studies have demonstrated the importance of the mesenteric lymph nodes (MLNs) and intestinal CD103(+) dendritic cells (DCs) in driving small intestinal tolerance to protein antigen, the structural and immunological basis of colonic tolerance remain poorly understood. We show here that the caudal and iliac lymph nodes (ILNs) are inductive sites for distal colonic immune responses and that colonic T cell-mediated tolerance induction to protein antigen is initiated in these draining lymph nodes and not in MLNs.

View Article and Find Full Text PDF

A hallmark of the gluten-driven enteropathy celiac disease is autoantibody production towards the enzyme transglutaminase 2 (TG2) that catalyzes the formation of covalent protein-protein cross-links. Activation of TG2-specific B cells likely involves gluten-specific CD4 T cells as production of the antibodies is dependent on disease-associated HLA-DQ allotypes and dietary intake of gluten. IgA plasma cells producing TG2 antibodies with few mutations are abundant in the celiac gut lesion.

View Article and Find Full Text PDF

Celiac disease is an inflammatory disorder with leukocyte infiltration and changes of tissue architecture of the small intestine. The condition develops in genetically susceptible individuals as the result of an inappropriate immune response to gluten proteins of wheat, barley and rye. The clinical manifestations and the histological changes normalize when gluten is eliminated from the diet.

View Article and Find Full Text PDF

Background: Celiac disease is a multifactorial and polygenic disease with autoimmune features. The disease is caused by an inappropriate immune response to gluten. Elimination of gluten from the diet leads to disease remission, which is the basis for today's treatment of the disease.

View Article and Find Full Text PDF

Background: Celiac disease (CD) is an intestinal inflammation driven by gluten-reactive CD4(+) T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg) differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD.

View Article and Find Full Text PDF

Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species, G. hirsutum (Gh) and G.

View Article and Find Full Text PDF

Celiac disease is an immune-mediated disorder in which mucosal autoantibodies to the enzyme transglutaminase 2 (TG2) are generated in response to the exogenous antigen gluten in individuals who express human leukocyte antigen HLA-DQ2 or HLA-DQ8 (ref. 3). We assessed in a comprehensive and nonbiased manner the IgA anti-TG2 response by expression cloning of the antibody repertoire of ex vivo-isolated intestinal antibody-secreting cells (ASCs).

View Article and Find Full Text PDF