Publications by authors named "Prayan Pokharel"

Plants produce chemicals (or plant specialised/secondary metabolites, PSM) to protect themselves against various biological antagonists. Herbivorous insects use plants in two ways: as a food source and as a defence source. Insects can detoxify and sequester PSMs in their bodies as a defence mechanism against predators and pathogens.

View Article and Find Full Text PDF

In some aposematic species the conspicuousness of an individual's warning signal and the concentration of its chemical defense are positively correlated. Several mechanisms have been proposed to explain this phenomenon, including resource allocation trade-offs where the same limiting resource is needed to produce both the warning signal and chemical defense. Here, the large milkweed bug (: Heteroptera, Lygaeinae) was used to test whether allocation of antioxidants, that can impart color, trade against their availability to prevent self-damage caused by toxin sequestration.

View Article and Find Full Text PDF

Herbivorous insects encounter diverse plant specialized metabolites (PSMs) in their diet, that have deterrent, anti-nutritional, or toxic properties. Understanding how they cope with PSMs is crucial to understand their biology, population dynamics, and evolution. This review summarizes current and emerging cutting-edge methods that can be used to characterize the metabolic fate of PSMs, from ingestion to excretion or sequestration.

View Article and Find Full Text PDF

Sequestration, that is, the accumulation of plant toxins into body tissues for defense, was predicted to incur physiological costs and may require resistance traits different from those of non-sequestering insects. Alternatively, sequestering species could experience a cost in the absence of toxins due to selection on physiological homeostasis under permanent exposure of sequestered toxins in body tissues. Milkweed bugs (Heteroptera: Lygaeinae) sequester high amounts of plant-derived cardenolides.

View Article and Find Full Text PDF

Predators and parasitoids regulate insect populations and select defense mechanisms such as the sequestration of plant toxins. Sequestration is common among herbivorous insects, yet how the structural variation of plant toxins affects defenses against predators remains largely unknown. The palearctic milkweed bug (Heteroptera: Lygaeinae) was recently shown to sequester cardenolides from (Ranunculaceae), while its relative also obtains cardenolides but from (Plantaginaceae).

View Article and Find Full Text PDF