Motivation: Mutations in protein-protein interactions can affect the corresponding complexes, impacting function and potentially leading to disease. Given the abundance of membrane proteins, it is crucial to assess the impact of mutations on the binding affinity of these proteins. Although several methods exist to predict the binding free energy change due to mutations in protein-protein complexes, most require structural information of the protein complex and are primarily trained on the SKEMPI database, which is composed mainly of soluble proteins.
View Article and Find Full Text PDFThe development of methods and algorithms to predict the effect of mutations on protein stability, protein-protein interaction, and protein-DNA/RNA binding is necessitated by the needs of protein engineering and for understanding the molecular mechanism of disease-causing variants. The vast majority of the leading methods require a database of experimentally measured folding and binding free energy changes for training. These databases are collections of experimental data taken from scientific investigations typically aimed at probing the role of particular residues on the above-mentioned thermodynamic characteristics, i.
View Article and Find Full Text PDF