Alteration of a bacteriocin-producing hydrophilic bacterium, Lactococcus lactis IO-1, into a hydrophobic material with potential antimicrobial activity using chitosan was investigated and compared with five other bacterial species with industrial importance. The negatively charged bacterial cells were neutralized by positively charged chitosan, resulting in a significant increase in the hydrophobicity of the bacterial cell surface. The largest Gram-positive B.
View Article and Find Full Text PDFThe use of bacterial cell or biocatalyst for industrial synthetic chemistry is on the way of significant growth since the biocatalyst requires low energy input compared to the chemical synthesis and can be considered as a green technology. However, majority of natural bacterial cell surface is hydrophilic which allows poor access to the hydrophobic substrate or product. In this study, Escherichia coli (E.
View Article and Find Full Text PDFAn oil-in-water Pickering emulsion stabilized by biobased material based on a bacteria-chitosan network (BCN) was developed for the first time in this study. The formation of self-assembled BCN was possible due to the electrostatic interaction between negatively charged bacterial cells and polycationic chitosan. The BCN was proven to stabilize the tetradecane/water interface, promoting formation of highly stable oil-in-water emulsion (o/w emulsion).
View Article and Find Full Text PDF