Introduction: The post-dural puncture headache is one of the common complications of spinal anaesthesia. It is one of the most frequent claims for malpractice involving obstetrics anaesthesia. Though self-limiting it is troublesome to the patient.
View Article and Find Full Text PDFJNMA J Nepal Med Assoc
April 2021
Introduction: Women who conceive at advance age are at risk of pregnancy complications and adverse foetal outcome. This study aims to find out the prevalence of pregnancy at advance age in a teaching hospital.
Methods: A descriptive cross-sectional study was conducted between October 2019 to August 2020 at department of obstetrics and gynaecology of a tertiary care centre of Nepal, after obtaining ethical clearance from Institutional Review Committee (dated 03/09/2019 with ref no.
Introduction: Major concern shifts from mother to newborn in postnatal period. Postpartum complications contribute to a lot of maternal morbidity and mortality. This study aims to determine the prevalence of morbidities in women following delivery at Manipal Teaching Hospital so as to identify and improve maternal quality care.
View Article and Find Full Text PDFDirect interspecies electron transfer (DIET) is important in diverse methanogenic environments, but how methanogens participate in DIET is poorly understood. Therefore, the transcriptome of grown via DIET in co-culture with was compared with its transcriptome when grown via H interspecies transfer (HIT) with . Notably, transcripts for the FH dehydrogenase, Fpo, and the heterodisulfide reductase, HdrABC, were more abundant during growth on DIET.
View Article and Find Full Text PDFCoastal sediments are rich in conductive particles, possibly affecting microbial processes for which acetate is a central intermediate. In the methanogenic zone, acetate is consumed by methanogens and/or syntrophic acetate-oxidizing (SAO) consortia. SAO consortia live under extreme thermodynamic pressure, and their survival depends on successful partnership.
View Article and Find Full Text PDFPrevious studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcripts during an acetate-injection field experiment demonstrated that acetoclastic methanogens from the genus Methanosarcina were enriched after 40 days of acetate amendment. The increased abundance of Methanosarcina corresponded with an accumulation of methane in the groundwater.
View Article and Find Full Text PDFBiosouring in crude oil reservoirs by sulfate-reducing microbial communities (SRCs) results in hydrogen sulfide production, precipitation of metal sulfide complexes, increased industrial costs of petroleum production, and exposure issues for personnel. Potential treatment strategies include nitrate or perchlorate injections into reservoirs. Gas chromatography with vacuum ultraviolet ionization and high-resolution time-of-flight mass spectrometry (GC-VUV-HTOF) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with electrospray ionization were applied in this study to identify hydrocarbon degradation patterns and product formations in crude oil samples from biosoured, nitrate-treated, and perchlorate-treated bioreactor column experiments.
View Article and Find Full Text PDFClostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H), carbon dioxide (CO), and carbon monoxide (CO), or with H and CO.
View Article and Find Full Text PDFThe possibility that (formerly ) and species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET.
View Article and Find Full Text PDFPrior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial granules from an aerobic bioreactor designed for phosphate removal were not.
View Article and Find Full Text PDFInterspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities.
View Article and Find Full Text PDFBiochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor.
View Article and Find Full Text PDFDirect interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane.
View Article and Find Full Text PDFPrevious studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain.
View Article and Find Full Text PDFNanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi-heme c-type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS-deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction.
View Article and Find Full Text PDFSyntrophic associations are central to microbial communities and thus have a fundamental role in the global carbon cycle. Despite biochemical approaches describing the physiological activity of these communities, there has been a lack of a mechanistic understanding of the relationship between complex nutritional and energetic dependencies and their functioning. Here we apply a multi-omic modelling workflow that combines genomic, transcriptomic and physiological data with genome-scale models to investigate dynamics and electron flow mechanisms in the syntrophic association of Geobacter metallireducens and Geobacter sulfurreducens.
View Article and Find Full Text PDFDirect interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G.
View Article and Find Full Text PDFUnlabelled: Geobacter sulfurreducens strain KN400 was recovered in previous studies in which a culture of the DL1 strain of G. sulfurreducens served as the inoculum in investigations of microbial current production at low anode potentials (-400 mV versus Ag/AgCl). Differences in the genome sequences of KN400 and DL1 were too great to have arisen from adaptive evolution during growth on the anode.
View Article and Find Full Text PDFThe possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G.
View Article and Find Full Text PDFDirect interspecies electron transfer (DIET) is an alternative to interspecies H(2)/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P.
View Article and Find Full Text PDFMicrobial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008.
View Article and Find Full Text PDFGeobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance.
View Article and Find Full Text PDFRice straw is a major substrate for the production of methane in flooded rice fields and results in increase of CH4 emission into the atmosphere. We investigated the bacteria and archaea involved in straw degradation by adding (13) C-labelled straw to the rhizosphere of planted rice microcosms in the greenhouse. The degradation of added straw resulted in the production of (13) C-labelled CH4 as end-product, which was detected in the pore water.
View Article and Find Full Text PDF