Publications by authors named "Pravin Savata Gade"

Xylooligosaccharides (XOS) obtained from lignocellulosic biomass after autohydrolysis primarily consist of lignin-derived impurities and autogenerated inhibitors like furfural, hydroxymethylfurfural, and acetic acid. In this study, graphene oxide-mediated purification (GOMP), a novel and environmentally friendly downstream processing method, was developed for the purification of XOS from hydrolysate obtained after ozone-assisted autohydrolysis of wheat bran. GOMP resulted in appreciable recovery of total XOS from the hydrolysate (73.

View Article and Find Full Text PDF

Correction for 'Graphene oxide-mediated fluorescence turn-on GO-FAM-FRET aptasensor for detection of sterigmatocystin' by Pravin Savata Gade , , 2022, , 3890-3897, DOI: https://doi.org/10.1039/D2AY01405J.

View Article and Find Full Text PDF

Sterigmatocystin (STC) is a toxic fungal secondary metabolite recognized by the FAO and WHO as a genotoxic and carcinogenic substance. STC contaminates several foods and feed commodities, posing a health risk to humans. The present study proposes to develop a graphene oxide-mediated aptasensor platform for the one-step detection of STC.

View Article and Find Full Text PDF

In recent times, bi- and tri-metallic nanocomposites are being extensively studied to improve the catalytic surface and sensitivity of detection. In this study, we designed a formaldehyde dehydrogenase decorated Cys-AuPd-ErGO nanocomposite with fern like AuPd dendrites deposited on reduced graphene oxide (ErGO) on screen printed electrode (SPE) for determination of NADH and successfully demonstrated its application for detection of HCHO. This biosensor exhibited direct electron transfer by lowering the oxidation potential of NADH from +0.

View Article and Find Full Text PDF

In the present study, ozone assisted autohydrolysis (OAAH) was evaluated for enhanced generation of xylooligosaccharide (XOS) from wheat bran. The total XOS yield with optimum ozone dose of 3% (OAAH-3) was found to be 8.9% (w/w biomass) at 110 °C in comparison to 7.

View Article and Find Full Text PDF