Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors.
View Article and Find Full Text PDFIn the realm of carriers for enzyme immobilization, the use of MOFs has accelerated owing to their exceptional porosity and stability. Among these, 2D metal-organic frameworks (2D-MOFs) have emerged as promising supports for enzyme immobilization. This review highlights advancements in their synthesis, structural properties, and functional characteristics, focusing on enhancing catalytic performance and stability.
View Article and Find Full Text PDFThe study explores glycerosomes as effective vesicular systems for transdermal delivery of atorvastatin (ATO) to overcome drawbacks related to its oral administration. The objectives of this study were to formulate, by thin-film hydration method, optimize using definitive screening design and evaluate ATO-loaded glycerosomes (ATOG) which were then incorporated into patch followed by the evaluation of glycerosomes containing different concentration of glycerol. Vesicle size, Polydispersity index (PDI), zeta potential, entrapment efficiency and loading capacity of spherical ATOG (0-30%w/w) showed 137.
View Article and Find Full Text PDFIntegrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis.
View Article and Find Full Text PDFBackground: This study evaluated physicians' and patients' beliefs about biosimilars in Hong Kong, India, Pakistan, Singapore, Taiwan, and Thailand.
Research Design And Methods: An online survey administered to physicians (dermatologists, = 119; gastroenterologists, = 148; rheumatologists, = 161) between 22 October 2021 and 7 January 2022, and patients ( = 90) with rheumatic or inflammatory bowel disease between 25 October 2021 and 12 April 2022.
Results: Most (68%) physicians reported having a strong knowledge about biosimilars, yet 49% indicated that biosimilars are readily available to them.
Chlorpyrifos (CPS) is widely found in food and water sources due to agricultural use, posing health and environmental risks. Therefore, this work introduces a fluorescent sensor design of silver nanoparticle-embedded nano zirconium-based metal-organic frameworks (UiO-66-NH@AgNPs) for accurate examination of CPS. Briefly, UiO-66-NH was synthesized hydrothermally, exhibiting weak luminescence owed to ligand-to-metal charge transfer (LMCT).
View Article and Find Full Text PDFIn this study, we developed a new fluorescence "on-off-on" sensor utilizing water-soluble cobalt/zinc-nitrogen co-doped graphene quantum dots (Co/Zn-N-GQDs) to recognize quinalphos pesticide in vegetable and fruit samples. Primarily, the synthesis method employed a one-pot hydrothermal approach, using betel leaves as a natural precursor and cobalt ("Co"), zinc ("Zn"), and urea ("N") as dopant sources. The Co/Zn-N-GQDs probes underwent comprehensive analytical characterization.
View Article and Find Full Text PDFAim: Atorvastatin (ATO) loaded chitosan-based polyelectrolyte complex nanoparticles (PECN) incorporated transdermal patch was developed to enhance its skin permeability and bioavailability.
Methodology: The ATO loaded PECN were prepared by ionic gelation method and optimized by Box-Behnken design. The optimized batches were evaluated for physicochemical characteristics, in vitro, ex vivo, cell line and stability studies.
The study was aimed to formulate and evaluate apremilast-loaded zinc oxide-mesoporous silica nanoparticles for treatment of psoriasis. Mesoporous silica nanoparticles were prepared by using sol-gel method and evaluated for particle size, drug release, cytotoxicity study and pharmacodynamic study. The synthesized mesoporous silica nanoparticles showed particle size of 319.
View Article and Find Full Text PDFIntegrating enzymes and nanozymes in various applications is a topic of significant interest. The researchers have explored the encapsulation of enzymes using diverse nanostructures to create nanomaterial-enzyme hybrids. These nanomaterials introduce unique properties that contribute to the additional activity along with the stabilization of enzymes in immobilized form, enabling a cascade of second-order reactions.
View Article and Find Full Text PDFA spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.
View Article and Find Full Text PDFDespite the high medicinal value of tiopronin, there are substantial adverse effects such as yellow skin, yellow eyes, muscle aches, etc. Therefore, there is a huge necessity to identify tiopronin using advanced sensors in provided samples. Recently, the preference for graphene quantum dots (GQDs) and inorganic nanomaterial-based fluorescent sensors for the detection of pharmaceuticals has been extensively documented due to their plentiful advantages.
View Article and Find Full Text PDFClozapine, which is widely used to treat schizophrenia, shows low bioavailability due to poor solubility and high first-pass metabolism. The study aimed to design clozapine-loaded carbon dots (CDs) to enhance availability of the clozapine to the brain via intranasal pathway. The CDs were synthesized by pyrolysis of citric acid and urea at 200 °C by hydrothermal technique and characterized by photoluminescence, transmission electron microscopy (TEM), X-ray Photoelectron Spectrometer (XPS), and Fourier transform infrared spectrum (FTIR).
View Article and Find Full Text PDFBiodiesel production through the synthesis of Datura stramonium L. oil is studied to explore the most efficient approaches to suggest an alternate feedstock for biodiesel production. The main objective of this work is to optimize the process variables of biodiesel synthesis by using some statistical approach (Taguchi method, grey relational analysis (GRA), and response surface methodology (RSM) analyzing three parameters, i.
View Article and Find Full Text PDFBackground: US FDA defines: dietary supplements is a product that intended to supplement a person's diet, it's generally consist of at least one or more of the following dietary ingredients, vitamin, minerals, a herb or other botanical and amino acid by increasing the daily consumptions of an extract metabolite concentration, constitute or combinations of these medication. Excessive and inappropriate use of medicines has been recognised as a public health problem resulting in increased likelihood of adverse drug event, drug interaction, and inappropriate drug prescribing and increased cost.
Material And Methods: This was the cross-sectional study conducted in year 2022 at Pimpri Chinchwad (Pune).
We designed a highly sensitive fluorescent sensor for the early detection of sarcosine, a potential biomarker for prostate cancer. This sensor was based on surface-cobalt-doped fluorescent carbon quantum dots (Co-CD) using a FRET-based photoluminescent sensing platform. Blue luminescent carbon quantum dots (CQD) were synthesised through a hydrothermal approach, utilizing tree pod shells.
View Article and Find Full Text PDFHepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery.
View Article and Find Full Text PDFPresently, there is a necessity to design novel methods because of quercetin's significant biological relevance. Therefore, we developed the rose petal-derived graphene quantum dots embedded zinc metal organic frameworks (RP-GQDs@Zn-MOFs) based fluorescence "On-Off-On" nanoprobe for quercetin sensing. Initially, RP-GQDs were synthesized using rose petal waste and then subjected to embedding into Zn-MOFs.
View Article and Find Full Text PDFThe increased mortality rates associated with colorectal cancer highlight the pressing need for improving treatment approaches. While capsaicin (CAP) has shown promising anticancer activity, its efficacy is hampered due to low solubility, rapid metabolism, suboptimal bioavailability, and a short half-life. Therefore, this study aimed to prepare a lactoferrin-functionalized carboxymethyl dextran-coated egg albumin nanoconjugate (LF-CMD@CAP-EGA-NCs) for the targeted CAP delivery to enhance its potential for colorectal cancer therapy.
View Article and Find Full Text PDFCluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors.
View Article and Find Full Text PDFDeveloping a sensing platform that can quickly and accurately measure glutathione (GSH) is crucial for the early detection of various human diseases. GQDs have shown great potential in many technological and biological applications. This study focused on synthesizing nitrogen-doped GQDs (NGQDs) with stable blue fluorescence using a simple and easy hydrothermal method in one step.
View Article and Find Full Text PDFConventional techniques for enzyme immobilization suffer from suboptimal activity recovery due to insufficient enzyme loading and inadequate stability. Furthermore, these techniques are time-consuming and involve multiple steps which limit the applicability of immobilized enzymes. In contrast, the use of microfluidic devices for enzyme immobilization has garnered significant attention due to its ability to precisely control immobilization parameters, resulting in highly active immobilized enzymes.
View Article and Find Full Text PDFThe S2 nucleophilic substitution reaction is a vital organic transformation used for drug and natural product synthesis. Nucleophiles like cyanide, oxygen, nitrogen, sulfur, or phosphorous replace halogens or sulfonyl esters, forming new bonds. Isocyanides exhibit unique C-centered lone pair σ and π* orbitals, enabling diverse radical and multicomponent reactions.
View Article and Find Full Text PDFAzo dyes are widely used as food coloring agents because of their affordability and stability. Examples include brilliant blue, carmoisine, sunset yellow, allura red, and tartrazine (Tar), etc. Notably, Tar is often utilized in hazardous food goods.
View Article and Find Full Text PDF