Publications by authors named "Pravin Kotian"

Herein, we report a pair of regioselective - and alkylations of a versatile indazole, methyl 5-bromo-1-indazole-3-carboxylate () and the use of density functional theory (DFT) to evaluate their mechanisms. Over thirty - and -alkylated products were isolated in over 90% yield regardless of the conditions. DFT calculations suggest a chelation mechanism produces the -substituted products when cesium is present and other non-covalent interactions (NCIs) drive the -product formation.

View Article and Find Full Text PDF

Hepatitis C infection is caused by the bloodborne pathogen hepatitis C virus (HCV) and can lead to serious liver diseases and, ultimately, death if the treatment is ineffective. This work reports the synthesis and preclinical evaluation of 7 novel 9-O/N/S pyrimidine nucleosides, including compound 12, the triphosphate of known compound 7b. The nucleosides are 9-deaza modifications of adenosine and guanosine with β-2'-C-methyl substituent on the ribose.

View Article and Find Full Text PDF

As a part of our ongoing discovery efforts exploring azasugar as agents for treating various unmet medical needs, we prepared analogs of azasugar as potential anti-hepatitis C virus (HCV) agents. Herein we describe the synthesis of novel 2'β-C-Me 9-deazanucleoside azasugar analogs.

View Article and Find Full Text PDF

The three complement pathways comprising the early phase of the complement system (the classical, lectin, and alternative pathways) act together with the innate and adaptive immune systems to protect against foreign entities and maintain tissue homeostasis. While these systems are normally under tight regulatory control, several diseases have been reported to correlate with uncontrolled activation and amplification of the alternative pathway, including paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, C3 glomerulopathy, and age-related macular degeneration. Complement FactorD (CFD), a serine protease, is the rate-limiting enzyme for the activity of alternative pathway.

View Article and Find Full Text PDF

Hereditary angioedema (HAE) is a rare and potentially life-threatening disease that affects an estimated 1 in 50,000 individuals worldwide. Berotralstat (BCX7353) is the only small molecule approved by the US Food and Drug Administration (FDA) for the prophylactic treatment of HAE attacks in patients 12 years and older. During the discovery of BCX7353, we also identified a novel series of small molecules containing a quaternary carbon as potent and orally bioavailable Plasma Kallikrein (PKal) inhibitors.

View Article and Find Full Text PDF

Hereditary angioedema (HAE) is a rare and potentially life-threatening disease that affects an estimated 1 in 50 000 individuals worldwide. Until recently, prophylactic HAE treatment options were limited to injectables, a burdensome administration route that has driven the need for an oral treatment. A substantial body of evidence has shown that potent and selective plasma kallikrein inhibitors that block the generation of bradykinin represent a promising approach for the treatment of HAE.

View Article and Find Full Text PDF

The adenosine nucleoside analog BCX4430 is a direct-acting antiviral drug under investigation for the treatment of serious and life-threatening infections from highly pathogenic viruses, such as the Ebola virus. Cellular kinases phosphorylate BCX4430 to a triphosphate that mimics ATP; viral RNA polymerases incorporate the drug's monophosphate nucleotide into the growing RNA chain, causing premature chain termination. BCX4430 is active in vitro against many RNA viral pathogens, including the filoviruses and emerging infectious agents such as MERS-CoV and SARS-CoV.

View Article and Find Full Text PDF

No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.

View Article and Find Full Text PDF

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1).

View Article and Find Full Text PDF

Factor VIIa (FVIIa), a serine protease enzyme, coupled with tissue factor (TF) plays an important role in a number of thrombosis-related disorders. Inhibition of TF x FVIIa occurs early in the coagulation cascade and might provide some safety advantages over other related enzymes. We report here a novel series of substituted biphenyl derivatives that are highly potent and selective TF x FVIIa inhibitors.

View Article and Find Full Text PDF

Factor VIIa (FVIIa) is a trypsin-like serine protease in the coagulation cascade. Its complex with tissue factor (TF) triggers the extrinsic pathway of the coagulation cascade, generating a blood clot. Research programs at several centers now recognize the important roles played by TF and FVIIa in both the thrombotic and inflammatory processes associated with cardiovascular diseases.

View Article and Find Full Text PDF

Benzoic acid and pyridine derivatives inhibit recombinant trans-sialidase from Trypanosoma cruzi with I50 values between 0.4 and 1mM. The best compounds, 4-acetylamino-3-hydroxymethylbenzoic acid and 5-acetylamino-6-aminopyridine-2-carboxylic acid, provide new leads to inhibitors not containing the synthetically complex sialic acid structure.

View Article and Find Full Text PDF

The introduction of versatile functional groups, allyl and ester, at the C-1 position of the acyclic chain in acyclic adenine nucleosides was achieved for the first time directly by alkylation of adenine and N6-potected adenine. Thus, the C-1'-substituted N9-adenine acyclic nucleoside, adenine-9-yl-pent-4-enoic acid ethyl ester (11), was prepared by direct alkylation of adenine with 2-bromopent-4-enoic acid ethyl ester (6), while the corresponding N7-regioisomer, 2-[6-(dimethylaminomethyleneamino)-purin-7-yl]-pent-4-enoic acid ethyl ester (10), was obtained in one step by the coupling of N, N-dimethyl-N'- (9H-purin-6-yl)-formamidine (9) with 2-bromopent-4-enoic acid ethyl ester (6). The functional groups, ester and allyl, were converted to the desired hydroxymethyl and hydroxyethyl groups, and subsequently to phosphonomethyl derivatives and corresponding pyrophosphorylphosphonates.

View Article and Find Full Text PDF

A number of N6-substituted 9-[3-(phosphonomethoxy)propyl]adenine derivatives having hydroxymethyl at C-1' position were prepared from the appropriate 6-chloroadenine derivative. The syntheses of the corresponding prodrugs of these compounds are also reported. These compounds showed poor activity against HCV in replicon assay.

View Article and Find Full Text PDF

The appropriately protected C-1'-hydroxyethyl-3-hydroxypropyl-N9-adenine nucleoside was prepared from 1-pivaloyloxy-5-tert-butyldiphenylsilyloxy-3-pentanol and adenine through the Mitsunobu reaction. One of the terminal hydroxyls was converted to the phosphonomethoxy derivative and the prodrug.

View Article and Find Full Text PDF

Various C-1'-substituted acyclic N9 adenine nucleosides were prepared from 9-[(1-hydroxymethyl)(3-monomethoxytrityloxy)propyl]-N6-monomethoxytrityladenine. The hydroxymethyl was modified to the phosphonomethoxy derivative, and the 3-monomethoxytrityloxy was converted to hydroxyl, methoxy, azido, and amino. Other substituents, such as ethyl and ea-hydroxyethyl were also prepared.

View Article and Find Full Text PDF

Acyclic N9 adenine nucleosides substituted at C-1' position were prepared by the Mitsunobu reaction of 1-tert-butyldimethylsilyl-4-pivaloylbutan-1,2,4-triol (5) with adenine. Pivaloyl hydroxyl was modified to the phosphonomethoxy derivatives, and the tert-butyldimethylsilyl hydroxyl was converted to methoxy, azido, amino, fluoro, and c-hydroxyethyl and was eliminated to give vinyl. The resulting phosphonic acids were converted to prodrugs also.

View Article and Find Full Text PDF

Tissue factor (TF) is a transmembrane glycoprotein that binds its zymogen cofactor, Factor VIIa (FVIIa) on the cell surface. Together (TF/FVIIa) they activate Factor X (FX) and Factor IX (FIX) and start the extrinsic pathway of blood coagulation. As such, the TF/FVIIa complex plays an important role in normal physiology as well as in thrombotic diseases such as unstable angina (UA), disseminated intravascular coagulation (DIC), and deep vein thrombosis (DVT).

View Article and Find Full Text PDF

Cyclopentane derivatives, designated as BCX-1812, BCX-1827, BCX-1898, and BCX-1923, were tested in parallel with oseltamivir carboxylate and zanamivir for the in vivo activity in mice infected with A/Turkey/Mas/76 X A/Beijing/32/92 (H6N2) influenza virus. The compounds were tested orally and intranasally at different dose levels. BCX-1812, BCX-1827, and BCX-1923 showed more than 50% protection at 1mg/kg/day dose level on oral treatment.

View Article and Find Full Text PDF

Based upon the activity and X-ray crystallographic studies of tri-substituted benzene derivatives containing carboxylic acid, acetamido and guanidine groups, we investigated the effect of the fourth substituent to fulfill the fourth pocket of neuraminidase enzyme. The groups selected as fourth substituents were hydroxymethyl, hydroxyethyl, oxime and amino. These tetra-substituted benzene derivatives were synthesized and evaluated for neuraminidase inhibitory activity.

View Article and Find Full Text PDF

In further studies aimed toward identifying effective and safe inhibitors of influenza neuraminidases, we synthesized a series of multisubstituted cyclopentane amide derivatives. Amides prepared were 14 examples of N-substituted alkyl or aralkyl types from primary amines, 13 examples of the N,N-disubstituted alkyl, aralkyl, or substituted-alkyl type from secondary amines, and 12 examples from cycloaliphatic or substituted cycloaliphatic secondary amines. These compounds bearing two chiral centers, at position-1 in the ring and position-1' in the side chain attached at position 3, were tested for their ability to inhibit A and B forms of influenza neuraminidase.

View Article and Find Full Text PDF