Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively.
View Article and Find Full Text PDFAntimalarial drug resistance is a serious obstacle in the persistent quest to eradicate malaria. There is a need for potent chemical agents that are able to act on drug-resistant populations at reasonable concentrations without any related toxicity to the host. By rational drug design, we envisaged to address this issue by generating a novel hybrid drug possessing two pharmacophores that can act on two unique and independent targets within the cell.
View Article and Find Full Text PDF