Publications by authors named "Praveen Ramaprabhu"

We analyze the local wave-number (LWN) model, a two-point spectral closure model for turbulence, as applied to the Rayleigh-Taylor (RT) instability, the flow induced by the relaxation of a statically-unstable density stratification. Model outcomes are validated against data from 3D simulations of the RT instability. In the first part of the study we consider the minimal model terms required to capture inhomogeneous mixing and show that this version, with suitable model coefficients, is sufficient to capture the evolution of important mean global quantities including mix-width, turbulent mass flux velocity, and Reynolds stress, if the start time is chosen such that the earliest transitions are avoided.

View Article and Find Full Text PDF

Experiments and numerical simulations are performed on the Rayleigh-Taylor instability with a complex acceleration history g(t) consisting of consecutive periods of acceleration, deceleration, and acceleration. The dominant bubbles and spikes that grow in the initial unstable phase are found to be shredded by the trailing structures during the stable deceleration phase. This reduces their diameter at the front and increases the atomic mixing such that the growth during the final unstable acceleration is retarded.

View Article and Find Full Text PDF