Publications by authors named "Praveen Praveen"

Article Synopsis
  • Aggregation of antimicrobial peptides (AMPs) can increase their effectiveness against bacteria by disrupting their cell structures, presenting a potential solution to antibiotic resistance.
  • Researchers focused on the cephalopod Octopus bimaculoides, which lacks known AMP genes, and utilized artificial intelligence to identify four aggregation-prone peptides (Oct-P1 to Oct-P4), with Oct-P2 showing a 90% reduction in bacterial viability.
  • The study revealed that Oct-P2 not only penetrates bacterial cells but also interacts with DNA, hindering gene expression, thus illustrating its promise as a template for developing new antimicrobial therapies.
View Article and Find Full Text PDF

α-Cyanostilbene represents one of the easily functionalized aggregation-induced emission (AIE) scaffolds. It has been widely adopted for the construction of fluorescent materials for broad applications. Here, we further expanded the utilization of α-cyanostilbene derivatives for the detection of hypoxia or proteostasis imbalance in live cells.

View Article and Find Full Text PDF

A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity.

View Article and Find Full Text PDF

Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented alterations to their amino acid sequences or structural adjustments.

View Article and Find Full Text PDF

Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, three-disulfide-bond-containing peptide, which is unstable in human serum and difficult to synthesize efficiently.

View Article and Find Full Text PDF

Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides.

View Article and Find Full Text PDF

H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth.

View Article and Find Full Text PDF

Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin's receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges.

View Article and Find Full Text PDF

Objectives: This study aimed to synthesise a drug-delivery system based on a porous polymer hydrogel, with antimicrobial properties against Porphyromonas gingivalis and potential to be used in tissue regeneration.

Material And Methods: 2-Hydroxyethyl methacrylate monomers were polymerised using thermal and photoactivation in the presence of silver nitrate (AgNO) and/or chlorhexidine digluconate. Poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels containing silver nanoparticles (AgNPs) and/or 0.

View Article and Find Full Text PDF

The hormone, relaxin (RLX), exerts various organ-protective effects independently of etiology. However, its complex two-chain and three disulphide bonded structure is a limitation to its preparation and affordability. Hence, a single chain-derivative of RLX, B7-33, was developed and shown to retain the anti-fibrotic effects of RLX in vitro and in vivo.

View Article and Find Full Text PDF

Honey bees provide essential environmental services, pollinating both agricultural and natural ecosystems that are crucial for human health. However, these pollination services are under threat by outbreaks of the bacterial honey bee disease American foulbrood (AFB). Caused by the bacterium, Paenibacillus larvae, AFB kills honey bee larvae, converting the biomass to a foul smelling, spore-laden mass.

View Article and Find Full Text PDF

The growing epidemic of diabetes means that there is a need for therapies that are more efficacious, safe, and convenient. Here, we report the efficient synthesis of a novel disulfide dimer of human insulin tethered at the N-terminus of its B-chain through placement of a cysteine residue. The resulting peptide was shown to bind to both the insulin receptor isoform B and insulin-like growth factor-1 receptor with comparable affinity to native insulin.

View Article and Find Full Text PDF

Insulin-like peptide 5 (INSL5), the natural ligand for the relaxin family peptide receptor 4 (RXFP4), is a gut hormone that is exclusively produced by colonic L-cells. We have recently developed an analogue of INSL5, INSL5-A13, that acts as an RXFP4 agonist and stimulates colorectal propulsion in wild-type mice but not in RXFP4-knockout mice. These results suggest that INSL5 may have a physiological role in the control of colorectal motility.

View Article and Find Full Text PDF

The receptor for the neuropeptide relaxin 3, relaxin family peptide 3 (RXFP3) receptor, is an attractive pharmacological target for the control of eating, addictive, and psychiatric behaviors. Several structure-activity relationship studies on both human relaxin 3 (containing 3 disulfide bonds) and its analogue A2 (two disulfide bonds) suggest that the C-terminal carboxylic acid of the tryptophan residue in the B-chain is important for RXFP3 activity. In this study, we have added amide, alcohol, carbamate, and ester functionalities to the C-terminus of A2 and compared their structures and functions.

View Article and Find Full Text PDF

Background Human relaxin-2 is a peptide hormone capable of pleiotropic effects in several organ systems. Its recombinant formulation (serelaxin) has been demonstrated to reduce infarct size and prevent excessive scar formation in animal models of cardiac ischemia-reperfusion injury. B7-33, a synthetically designed peptide analogous to B-chain of relaxin-2, invokes signaling at relaxin family peptide receptor 1 (cognate receptor for relaxin-2) by preferentially phosphorylating the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2.

View Article and Find Full Text PDF

Glycosylation is an accepted strategy to improve the therapeutic value of peptide and protein drugs. Insulin and its analogues are life-saving drugs for all type I and 30% of type II diabetic patients. However, they can readily form fibrils which is a significant problem especially for their use in insulin pumps.

View Article and Find Full Text PDF

Insulin-like peptide 5 (INSL5) is a very important pharma target for treating human conditions such as anorexia and diabetes. However, INSL5 with two chains and three disulfide bridges is an extremely difficult peptide to assemble by chemical or recombinant means. In a recent study, we were able to engineer a simplified INSL5 analogue 13 which is a relaxin family peptide receptor 4 (RXFP4)-specific agonist.

View Article and Find Full Text PDF

The development of antifibrotic materials and coatings that can resist the foreign body response (FBR) continues to present a major hurdle in the advancement of current and next-generation implantable medical devices, biosensors, and cell therapies. From an implant perspective, the most important issue associated with the FBR is the prolonged inflammatory response leading to a collagenous capsule that ultimately blocks mass transport and communication between the implant and the surrounding tissue. Up to now, most attempts to reduce the capsule thickness have focused on providing surface coatings that reduce protein fouling and cell attachment.

View Article and Find Full Text PDF

There are seven human relaxin family peptides that have two chains (A and B) and three disulfide bonds. The target receptors for four of these peptides are known as relaxin family peptide receptors, RXFP1-RXFP4. Detailed structure-activity relationship (SAR) studies of relaxin family peptides have been reported over the years and have led to the design of new analogs with agonistic and antagonistic properties.

View Article and Find Full Text PDF

Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism.

View Article and Find Full Text PDF